1. 引言
水产养殖业是全球重要的食品供应来源之一,随着人们对水产品需求的不断增加,水产养殖行业面临着越来越大的挑战。如何提高养殖效率、减少资源浪费、确保生物安全,是水产养殖行业亟待解决的问题。为了提高养殖生产的可持续性,精准的生物量统计和生长监测系统成为了该行业的重要技术支撑。
水产养殖生物量统计系统的核心是准确、实时地识别和监测养殖池中的水生物种,如鱼、虾等,通过计算其体积或质量来获取生物量。传统的统计方法依赖人工计数和手工测量,既费时又容易出错。深度学习,特别是YOLOv8(You Only Look Once Version 8)目标检测算法的引入,使得这一任务得以自动化,极大提升了效率和准确性。
本文将介绍如何基于YOLOv8构建一个水产养殖生物量统计系统,结合UI界面展示检测结果,并使用公共数据集进行训练与测试。
2. YOLOv8目标检测算法概述
YOLOv8(You Only Look Once Version 8)是YOLO系列目标检测算法的最新版本,其设计旨在通过快速高效的检测方式来实时识别图像中的目标。相较于前几代,YOLOv8在精度、速度和计算资源需求方面进行了优化,特别适合于需要实时处理的应用场景,如自动驾驶、智能监控和生物量统计等。