汉诺塔问题

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

1.汉诺塔问题描述

常见的汉诺塔问题是根据一个传说形成的数学问题:
有三根杆子A,B,C,A杆上有 N 个 (N>1) 穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至 C 杆:
1.每次只能移动一个圆盘;
2.大盘不能叠在小盘上面。
提示:可将圆盘临时置于 B 杆,也可将从 A 杆移出的圆盘重新移回 A 杆,但都必须遵循上述两条规则。
问:如何移?最少要移动多少次?

2.问题的解法

汉诺塔问题的基本思想是递归。假设有A,B,C三个塔,A塔有N块盘子,目标是把这些盘全部移到C塔。那么这个问题可以分解为三步:
1.先将A塔上面的N-1个盘子移到B塔,这个过程可以借助C塔。
2.将第N个盘子直接从A塔移到C塔。
3.将B塔上得N-1个盘子移到C塔,这个过程可以借助A塔。
按照上面的思路,代码就很好写了。

3.上代码

    public static void move(int n, char a, char b, char c) {
        if (n == 1) {
            System.out.println("move from " + a + " -> to " + c);
        } else {
            move(n - 1, a, c, b);
            move(1, a, b, c);
            move(n - 1, b, a, c);
        }
    }

    public static void main(String[] args) {
        move(3, 'a', 'b', 'c');
    }

最终的输出结果为:

move from a -> to c
move from a -> to b
move from c -> to b
move from a -> to c
move from b -> to a
move from b -> to c
move from a -> to c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值