判断二叉树是否为平衡二叉树

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bitcarmanlee/article/details/89299024

1.问题描述

输入一棵二叉树,判断该二叉树是否是平衡二叉树。
平衡二叉树:
如果一棵树是空树或者它的任意节点的左右两个子树的高度差的绝对值不超过1,那么这棵树为平衡二叉树。

2.解法一

最简单的想法就是,我们可以求出每个节点左右子树的高度,然后比较左右子树的高度差。如果高度差不超过1,那么就是一棵平衡二叉树。

    public static int maxDepth(TreeNode<Integer> root) {
        if (root == null) {
            return 0;
        }
        return 1 +  Math.max(maxDepth(root.left), maxDepth(root.right));
    }

    public static boolean balacne(TreeNode root) {
        if (root == null) {
            return true;
        }
        if(Math.abs(maxDepth(root.left) -maxDepth(root.right)) > 1) {
            return false;
        }

        return balacne(root.left) && balacne(root.right);
    }

3.解法二

上面方法的时间复杂度为O(n^2),因为每个节点都被遍历了很多次。从下往上遍历,如果子树是平衡二叉树,则返回子树高度,否则返回-1,时间复杂度可以降为O(n)。

   public static int maxDepth2(TreeNode root) {
        if (root == null) {
            return 0;
        }

        int leftHeight = maxDepth(root.left);
        if (leftHeight == -1) {
            return -1;
        }

        int rightHeight = maxDepth2(root.right);
        if (rightHeight == -1) {
            return -1;
        }

        return Math.abs(leftHeight - rightHeight) > 1 ? -1 : 1 + Math.max(leftHeight, rightHeight);
    }

    public static boolean balance2(TreeNode root) {
        return maxDepth2(root) != -1;
    }
展开阅读全文

没有更多推荐了,返回首页