【Python · PyTorch】线性代数 & 微积分

本文采用Python及PyTorch版本如下:

  • Python:3.9.0

  • PyTorch:2.0.1+cpu

本文为博主自用知识点提纲,无过于具体介绍,详细内容请参考其他文章。

1. 线性代数

线性代数是数学的一个分支,它的研究对象是向量、向量空间(线性空间)、线性变换及有限维的线性方程组。线性代数已被广泛地应用于自然科学和社会科学中。

  • 线性(Linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。
  • 非线性(Non-Linear)则相反,即量与量之间不按比例、不成直线的关系,一阶导数不为常数的函数。

1.1 基础

1.1.1 标量

在数学中,标量(Scalar):亦称作“无向量”,只具有数值大小,没有方向,但有正负之分。

在Python中,标量即为普通的数字类型,包括int(整型)、float(浮点型)、bool(布尔型)和complex(复数)。

在数学定义中,标量等价于零阶张量;在PyTorch中也是如此,但零阶张量被表示为为仅包含一个数字的torch.Tensor类型(等价于仅包含一个元素的列表),并不完全等价于数学上的普通标量(单个数字)。

import torch

x = torch.tensor(3.0)
y = torch.tensor(2.0)

x + y, x * y, x / y, x ** y

基本运算

1.1.2 向量

在数学中,向量(Vector,亦称欧几里得向量、几何向量),指具有大小(magnitude)和方向的量,形式上表现为以原点为始点箭头指向终点的坐标。向量一般表示为带箭头的线段,表示其方向;印刷体一般为加粗体字母。

数学表示法用x∈ℝn表示向量。

印刷体:
x = [ x 1 x 2 x 3 ⋮ x n ] \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots\\ x_n \\ \end{bmatrix} x= x1x2x3xn

手写体:
x → = [ x 1 x 2 x 3 ⋮ x n ] \overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots\\ x_n \\ \end{bmatrix} x = x1x2x3xn

在Python中,向量可以视作由标量值组成的列表,其中的标量值被称作向量的元素(element)分量(component)。一般可用向量表示数据集中的样本。

在数学定义中,向量等价于一阶张量,在PyTorch中也是如此。

x = torch.arange(4)
x

向量

我们可以通过索引访问元素,获得的元素仍为PyTorch标量(即<class 'torch.Tensor'>类型)。

x[3]

元素访问


长度(维度)、形状

向量的长度与维度等价,我们可以通过Python的内置函数len来访问其长度。

len(x)

长度

当张量为一阶张量(向量)时,我们可以通过shape属性访问其长度。

x.shape

形状

维度之分:

  • 张量:张量维度指张量的轴数(阶数)
  • 向量:向量维度指元素的数量(长度)

1.1.3 矩阵

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合。

在Python与数学中,矩阵同样代表二阶张量,以及向量的向量。

数学表示法用A∈ℝm×n来表示矩阵A,即用大写字母来表示矩阵,其中每个元素aij属于第i行第j列。

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} A= a11a21am1a12a22am2a1na2namn

A的形状为(m,n)或m×n,当m=n时,其被称作方阵(Square Matrix)

我们可以通过调用函数创建一个5×4的矩阵。

A = torch.arange(20).reshape(5, 4)
A

矩阵

与向量相同,我们可以通过索引访问元素,获得的元素仍为PyTorch标量(即<class 'torch.Tensor'>类型)。

A[3, 3]

索引访问元素

1.1.3.1 迹

迹(trace)运算是方阵对角元素的和:
T r ( A ) = ∑ i A i , i Tr(A)=\sum_{i}A_{i,i} Tr(A)=iAi,i
代码如下:

D = torch.arange(16).reshape(4,4)
D.trace()

方阵迹运算

在PyTorch中,非方阵迹计算规则如下:非方阵迹计算规则

代码如下:

B = torch.arange(20).reshape(4,5)
C = torch.arange(20).reshape(5,4)
B, B.trace(), C, C.trace()

非方阵迹运算

1.1.3.2 转置矩阵

当交换矩阵的行、列时,结果称为矩阵的转置(transpose),一般使用 A T A^{T} AT表示矩阵 A A A的转置。

A T = [ a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a m n ] A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} AT= a11a12a1na21a22a2nam1am2amn

可以通过如下代码访问其转置。

A.T

转置

A = A T A=A^{T} A=AT时,将 A A A矩阵称为对称矩阵(Systematic Matrix)。

1.1.3.3 特征值

特征值:指设 A A A是n阶方阵,如果存在数m和非零n维列向量x,使得 A x = λ x Ax=λx Ax=λx成立,则称λ是 A A A的一个特征值(characteristic value)或本征值(eigenvalue)。特征值分解可对满秩方阵进行分解。

具体内容见:特征值分解

1.1.3.4 奇异值

奇异值是矩阵里的概念,一般通过奇异值分解定理求得。设 A A A为m*n阶矩阵,q=min(m,n), A A T AA^{T} AAT的q个非负特征值的算术平方根叫作A的奇异值。奇异值分解是线性代数和矩阵论中一种重要的矩阵分解法,适用于信号处理和统计学等领域。

具体内容见:奇异值分解

1.1.3.5 逆矩阵

设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=I ,则称方阵A可逆,并称方阵B是A的逆矩阵。
A B = B A = I A T = B AB=BA=I\\ A^{T}=B AB=BA=IAT=B
求逆矩阵代码如下:

# 矩阵求逆一般建议使用double或float浮点型,否则无法表示元素为小数的逆矩阵
F = torch.tensor([[1., 2, 3], [0, 4, 5], [0, 0, 6]])
F.inverse()

逆矩阵

1.1.3.6 Moore-Penrose伪逆

对于非方阵,其逆矩阵没有定义,但我们希望通过 A ∈ R m × n A\in \mathbb{R^{m×n}} ARm×n的左逆 B B B求解线性方程:
A x = y Ax=y Ax=y
即:
x = B y x=By x=By
Moore-Penrose伪逆(Moore-Penrose广义逆)定义如下:
A + = lim ⁡ α → 0 ( A T A + α I ) − 1 A T = V D + U T A^{+}=\lim_{\alpha→0}(A^{T}A+\alpha I)^{-1}A^{T}=VD^{+}U^{T} A+=α0lim(ATA+αI)1AT=VD+UT

其中,矩阵 U U U D D D V V V是矩阵 A A A的奇异值分解后得到的矩阵。对角矩阵 D D D的伪逆 D + D^{+} D+是其非零元素取倒数再转置得到的。

对于矩阵 A ∈ R m × n A\in \mathbb{R^{m×n}} ARm×n

  • m < n m<n mn时(行数<列数),方程可能有多个解, x = A + y \boldsymbol{x}=A^{+}y x=A+y是所有可行解中L2范数 ∣ ∣ x ∣ ∣ 2 ||x||_2 ∣∣x2最小的解。
  • m > n m>n mn时(列数<行数),方程可能没有解, x = A + y \boldsymbol{x}=A^{+}y x=A+y可使得 A x Ax Ax y y y的L2距离 ∣ ∣ A x − y ∣ ∣ 2 ||Ax-y||_2 ∣∣Axy2最小。

1.1.4 张量

张量是一个更为一般的定义,其用特殊字体的大写字母表示( X \textsf{X} X),低阶张量与上述三种量的等价关系如下:

  • 零阶张量:标量(Scalar)

  • 一阶张量:向量(Vector)

  • 二阶张量:矩阵(Matrix)

我们同样可以使用类似的方式创建高阶张量,并通过索引访问其中的元素,获得的元素仍为PyTorch标量(即<class 'torch.Tensor'>类型)。

X = torch.arange(24).reshape(2, 3, 4)
print(X)
print(X[0, 1, 2])

高阶张量

1.2 向量空间

向量空间亦称线性空间,它是线性代数的中心内容和基本概念之一。

设V是一个非空集合,P是一个域。若:

1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。

2.在P与V的元素间定义了一种运算,称为数乘(亦称数量乘法),即对V中任意元素α和P中任意元素k,都按某一法则对应V内惟一确定的一个元素kα,称为k与α的积。

3.加法与纯量乘法满足以下条件:

(1)α+β=β+α,对任意α,β∈V.

(2)α+(β+γ)=(α+β)+γ,对任意α,β,γ∈V.

(3)存在一个元素0∈V,对一切α∈V有α+0=α,元素0称为V的零元.

(4)对任一α∈V,都存在β∈V使α+β=0,β称为α的负元素,记为-α.

(5)对P中单位元1,有1α=α(α∈V).

(6)对任意k,l∈P,α∈V有(kl)α=k(lα).

(7)对任意k,l∈P,α∈V有(k+l)α=kα+lα.

(8)对任意k∈P,α,β∈V有k(α+β)=kα+kβ.

则称V为域P上的一个线性空间,或向量空间。

其中,V中元素称为向量,V的零元称为零向量,P称为线性空间的基域。
当P是实数域时,V称为实线性空间;当P是复数域时,V称为复线性空间。

1.3 运算

1.3.1 加 & 减

任意阶张量均可与自身形状相同的张量相加减。若与单一数字相加减,将为张量内所有元素加减对应数字(等同于张量与由对应数字组成、与其形状、大小相同的张量相加减)

标量:

# 标量
a = torch.tensor(1)
b = torch.tensor(2)
a + b, a + 1

标量

向量:

# 向量
e = torch.tensor([1, 2, 3])
f = torch.tensor([2, 3, 4])
e + f, e + 1 

向量

矩阵:

# 矩阵
A = torch.arange(20).reshape(4, 5)
B = torch.arange(12, 20 + 12).reshape(4, 5)
A + B, A + 1

矩阵

高阶张量:

# 高阶张量
X = torch.arange(24).reshape(2 ,3, 4)
Y = torch.arange(12 , 24 + 12).reshape(2 ,3, 4)
X + Y, X + Y

高阶张量

1.3.2 内积 & 点积

1.3.2.1 内积

内积(Inner Product): 亦称数量积(dot product; scalar product),是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。

假设有两向量 a \boldsymbol{a} a, b \boldsymbol{b} b,则其内积表示如下:
⟨ a , b ⟩ \langle \boldsymbol{a}, \boldsymbol{b} \rangle a,b

除此之外,还有 内积空间 的定义,有兴趣的读者可以自行查阅资料了解,这里不过多叙述。

计算向量内积的代码如下:

a = torch.tensor([1., 2., 3.])
b = torch.tensor([4., 5., 6.])
a.inner(b)

内积

1.3.2.1 点积

点积(Dot Product):内积的一种特殊形式,即欧几里得空间内积的定义。

假设有两向量 a \boldsymbol{a} a, b \boldsymbol{b} b,则其点积表示如下:
a ⋅ b = a 1 ∗ b 1 + a 2 ∗ b 2 + ⋯ + a n ∗ b n = ∑ i = 1 n a i ∗ b i \boldsymbol{a} \cdot \boldsymbol{b} = a_1 * b_1 + a_2 * b_2 + \cdots + a_n * b_n = \sum_{i=1}^{n}a_i * b_i ab=a1b1+a2b2++anbn=i=1naibi

计算向量点积的代码如下:

a = torch.tensor([1., 2., 3.])
b = torch.tensor([4., 5., 6.])
a.dot(b)

点积

1.3.3 外积 & 克罗内克积

克罗内克积(Kronecker product):张量积的特殊形式

  • 克罗内克积是两个任意大小的矩阵间的运算,结果仍为一个矩阵(数学符号 ⊗ \otimes ,精确表达 ⊗ k \otimes_{k} k

我们以矩阵为例,用数学符号表示其计算过程:
A m × n ⊗ B p × q = [ a 11 B ⋯ a m 1 B ⋮ ⋱ ⋮ a 1 n B ⋯ a m n B ] = [ a 11 b 11 a 11 b 12 ⋯ a 11 b 1 q ⋯ ⋯ a 1 n b 11 a 1 n b 12 ⋯ a 1 n b 1 q a 11 b 11 a 11 b 12 ⋯ a 11 b 1 q ⋯ ⋯ a 1 n b 11 a 1 n b 12 ⋯ a 1 n b 1 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a 11 b p 1 a 11 b p 2 ⋯ a 11 b p q ⋯ ⋯ a 1 n b p 1 a 1 n b p 2 ⋯ a 1 n b p q ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋮ a m 1 b 11 a m 1 b 12 ⋯ a m 1 b 1 q ⋯ ⋯ a m n b 11 a m n b 12 ⋯ a m n b 1 q a m 1 b 21 a m 1 b 22 ⋯ a m 1 b 2 q ⋯ ⋯ a m n b 21 a m n b 22 ⋯ a m n b 2 q ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ a m 1 b p 1 a m 1 b p 2 ⋯ a m 1 b p q ⋯ ⋯ a m n b p 1 a m n b p 2 ⋯ a m n b p q ] A_{m×n} \otimes B_{p×q} = \begin{bmatrix} a_{11}B & \cdots & a_{m1}B \\ \vdots & \ddots & \vdots \\ a_{1n}B & \cdots & a_{mn}B \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1q}& \cdots & \cdots & a_{1n}b_{11} & a_{1n}b_{12} & \cdots & a_{1n}b_{1q} \\ a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1q}& \cdots & \cdots & a_{1n}b_{11} & a_{1n}b_{12} & \cdots & a_{1n}b_{1q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{11}b_{p1} & a_{11}b_{p2} & \cdots & a_{11}b_{pq}& \cdots & \cdots & a_{1n}b_{p1} & a_{1n}b_{p2} & \cdots & a_{1n}b_{pq} \\ \vdots & \vdots & \ddots & \vdots & \ddots & & \vdots & \vdots & & \vdots \\ \vdots & \vdots & \ddots & \vdots & & \ddots & \vdots & \vdots & & \vdots \\ a_{m1}b_{11} & a_{m1}b_{12} & \cdots & a_{m1}b_{1q}& \cdots & \cdots & a_{mn}b_{11} & a_{mn}b_{12} & \cdots & a_{mn}b_{1q} \\ a_{m1}b_{21} & a_{m1}b_{22} & \cdots & a_{m1}b_{2q}& \cdots & \cdots & a_{mn}b_{21} & a_{mn}b_{22} & \cdots & a_{mn}b_{2q} \\ \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{p1} & a_{m1}b_{p2} & \cdots & a_{m1}b_{pq}& \cdots & \cdots & a_{mn}b_{p1} & a_{mn}b_{p2} & \cdots & a_{mn}b_{pq} \\ \end{bmatrix} Am×nBp×q= a11Ba1nBam1BamnB = a11b11a11b11a11bp1am1b11am1b21am1bp1a11b12a11b12a11bp2am1b12am1b22am1bp2a11b1qa11b1qa11bpqam1b1qam1b2qam1bpqa1nb11a1nb11a1nbp1amnb11amnb21amnbp1a1nb12a1nb12a1nbp2amnb12amnb22amnbp2a1nb1qa1nb1qa1nbpqamnb1qamnb2qamnbpq

下面我们分别展示求标量、向量、矩阵、高阶张量的克罗内克积。

标量-克罗内克积:

a = torch.tensor([2])
b = torch.tensor([3])
a.kron(b)

标量

向量-克罗内克积:

x = torch.arange(3)
y = torch.arange(2, 2 + 3)
x.kron(y)

向量

矩阵-克罗内克积:

X = torch.arange(20).reshape(4 ,5)
Y = torch.arange(12, 12 + 20).reshape(4 ,5)
X.kron(Y)

矩阵

高阶张量-克罗内克积:

U = torch.arange(24).reshape(2, 3, 4)
V = torch.arange(15, 15 + 24).reshape(2, 3, 4)
U.kron(V)

高阶张量

1.3.4 哈达玛积

两个张量(标量、向量、矩阵、高阶张量)的按元素乘法称为哈达玛积(Hadamard Product)(数学符号 ⊙ \odot ),在代码中用*表示求哈达玛积。

我们以矩阵为例,用数学符号表示其计算过程:

A ⊙ B = [ a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a m n ] ⊙ [ b 11 b 21 ⋯ b m 1 b 12 b 22 ⋯ b m 2 ⋮ ⋮ ⋱ ⋮ b 1 n b 2 n ⋯ b m n ] = [ a 11 ∗ b 11 a 21 ∗ b 21 ⋯ a m 1 ∗ b m 1 a 12 ∗ b 12 a 22 ∗ b 22 ⋯ a m 2 ∗ b m 2 ⋮ ⋮ ⋱ ⋮ a 1 n ∗ b 1 n a 2 n ∗ b 2 n ⋯ a m n ∗ b m n ] A \odot B = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} \odot \begin{bmatrix} b_{11} & b_{21} & \cdots & b_{m1} \\ b_{12} & b_{22} & \cdots & b_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \cdots & b_{mn} \end{bmatrix} =\begin{bmatrix} a_{11} * b_{11} & a_{21} * b_{21} & \cdots & a_{m1} * b_{m1} \\ a_{12} * b_{12} & a_{22} * b_{22} & \cdots & a_{m2} * b_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} * b_{1n} & a_{2n} * b_{2n} & \cdots & a_{mn} * b_{mn} \end{bmatrix} AB= a11a12a1na21a22a2nam1am2amn b11b12b1nb21b22b2nbm1bm2bmn = a11b11a12b12a1nb1na21b21a22b22a2nb2nam1bm1am2bm2amnbmn

下面我们分别展示求标量、向量、矩阵、高阶张量的哈达玛积。

标量-哈达玛积:

a = torch.tensor([2])
b = torch.tensor([3])
a * b

标量

向量-哈达玛积:

x = torch.arange(3)
y = torch.arange(2, 2 + 3)
x * y

向量

矩阵-哈达玛积:

X = torch.arange(20).reshape(4 ,5)
Y = torch.arange(12, 12 + 20).reshape(4 ,5)
X * Y

矩阵

高阶张量-哈达玛积:

U = torch.arange(24).reshape(2, 3, 4)
V = torch.arange(15, 15 + 24).reshape(2, 3, 4)
U * V

高阶张量

1.3.5 矩阵乘积

矩阵乘积(Matrix Product): A m × n ⋅ B n × p = C m × p A_{m×n}·B_{n×p}=C_{m×p} Am×nBn×p=Cm×p,即A的列数须与B的行数相等, C i , j = ∑ k = 1 n A i , k B k , j C_{i,j}=\sum_{k=1}^{n}A_{i,k}B_{k,j} Ci,j=k=1nAi,kBk,j,在代码中用符号@表示。

标量-标量 矩阵乘积 :标量与标量乘积可用符号@表示,也可用torch.matmul()运算。

c = torch.tensor([2])
d = torch.tensor([3])
c @ d

标量-标量

向量-矩阵 矩阵乘积
向量与矩阵乘积可用符号@表示,也可用torch.mv()torch.matmul()运算。

区别:

  • torch.mv()须确保矩阵为第一个参数,向量为第二个参数,且形状符合运算规则。
  • @torch.matmul()则无上述限制,可将两者视为普通矩阵进行运算。
e = torch.arange(4.)  # 等效于 torch.arange(4.0)
f = torch.arange(5.)
B = torch.arange(12.,20+12).reshape(4,5)
e @ B, e.matmul(B), B.mv(f)

向量-矩阵

矩阵-矩阵 矩阵乘积
向量与矩阵乘积可用符号@表示,也可用torch.mm()torch.matmul()运算。

A = torch.arange(20.).reshape(5,4)
B = torch.arange(12.,20+12).reshape(4,5)
A @ B, A.mm(B), A.matmul(B) 

矩阵-矩阵

1.3.6 向量-向量叉积

向量积(Cross Product),又称叉积,是一种在向量空间中向量的二元运算,其可以新产生一个与原两向量都垂直的向量。

可以用数学符号 × × ×表示叉积,有时也用^表示叉积避免与字母 x x x混淆。

向量积:|c|=|a×b|=|a||b|sin<a,b>
即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。
而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

叉积

在PyTorch中求两向量叉积的方式如下。

x = torch.tensor([1, 2, 3])
y = torch.tensor([4, 5, 6])
x.cross(y)

叉积

1.4 范数

PyTorch范数API

torch.norm(input, p='fro', dim=None, keepdim=False, out=None, dtype=None)

其中,参数释义如下:

  • input:输入tensor类型的数据(张量内元素须为浮点型/复数)
  • p指定的范数
    • ‘fro’:Frobenius范数,即矩阵各项元素的绝对值平方总和。
    • ‘nuc’:核范数,即矩阵奇异值之和。
    • int型:p范数。
  • dim:指定计算维度,默认所有维度计算。
  • keepdim:布尔型,决定是否保留dim指定维度。
  • out:输出的tensor。
  • dtype:指定输出的tensor的数据类型。

首先我们定义所需的向量、矩阵。

x = torch.tensor([1., 2., 3.])      # 数字加小数点创建,默认为double型
y = torch.tensor([4., 5., 6.])

"""另外两种创建方式及不同浮点类型"""
# x = torch.tensor([1, 2, 3], dtype = torch.float64)    # 指定float64
# y = torch.tensor([4, 5, 6], dtype = torch.float64)

# x = torch.FloatTensor([1, 2, 3])          # 此方式默认float32
# y = torch.FloatTensor([4, 5, 6])


A = torch.arange(12, dtype = torch.double).reshape(3, 4)
B = torch.arange(20, dtype = torch.double).reshape(4, 5)

1.4.1 向量范数(p范数)

1.4.1.1 l 1 \mathscr{l_1} l1范数

曼哈顿范数(L1范数):向量所有分量绝对值之和,它受异常值影响较小。
L1范数

∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||\boldsymbol{x}||_{1}=\sum_{i=1}^{n}|x_{i}| ∣∣x1=i=1nxi
代码如下:

x.norm(p=1)

L1范数

1.4.1.2 l 2 \mathscr{l_2} l2范数

欧几里得范数(L2范数):向量所有分量绝对值平方和的平方根。

L2范数

∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n x i 2 = ( ∑ i = 1 n x i 2 ) 1 2 ||\boldsymbol{x}||_{2}=\sqrt{\sum_{i=1}^{n}x_{i}^{2}}=(\sum_{i=1}^{n}x_{i}^{2})^{\frac{1}{2}} ∣∣x2=i=1nxi2 =(i=1nxi2)21

代码如下:

x.norm(p=2)

L2范数

1.4.1.3 l ∞ \mathscr{l_\infty} l范数

切比雪夫范数(L∞范数):向量所有分量绝对值最大值。

∣ ∣ x ∣ ∣ ∞ = lim ⁡ p → ∞ ∑ i = 1 n ∣ x i ∣ p p = lim ⁡ p → ∞ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = max ⁡ ( ∣ x i ∣ ) ||\boldsymbol{x}||_{\infty}=\lim_{p\to \infty}\sqrt[p]{\sum_{i=1}^{n}|x_{i}|^{p}}=\lim_{p\to \infty}(\sum_{i=1}^{n}|x_{i}|^{p})^{\frac{1}{p}}=\max(|x_{i}|) ∣∣x=plimpi=1nxip =plim(i=1nxip)p1=max(xi)

我们已经发现了距离间的规律,这些范数被统称为p范数,可用如下公式表示所有向量p范数:
∣ ∣ x ∣ ∣ p = ∑ i = 1 n ∣ x i ∣ p p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ||\boldsymbol{x}||_{p}=\sqrt[p]{\sum_{i=1}^{n}|x_{i}|^{p}}=(\sum_{i=1}^{n}|x_{i}|^{p})^{\frac{1}{p}} ∣∣xp=pi=1nxip =(i=1nxip)p1

  • 当 p = 1 时,上式表示 曼哈顿范数
  • 当 p = 2 时,上式表示 欧几里得范数
  • 当 p → ∞ 时,上式表示 切比雪夫范数

1.4.2 矩阵范数

1.4.2.1 F r o b e n i u s \mathscr{Frobenius} Frobenius范数

弗罗贝尼乌斯范数:类似于向量的L2范数,矩阵 X ∈ R m × n X\in\mathbb{R^{m×n}} XRm×n的弗罗贝尼乌斯范数是矩阵元素平方和的平方根。

∣ ∣ X ∣ ∣ F = ∑ i = 1 m ∑ j = 1 n x i j 2 ||X||_{F}=\sqrt{\sum_{i=1}^{m}\sum_{j=1}^{n}x_{ij}^{2}} ∣∣XF=i=1mj=1nxij2
它具有向量范数的所有性质,代码如下:

# torch默认计算Frobenius范数
A.norm()

Frobenius范数

1.4.2.2 核范数

核范数:矩阵奇异值的和,可以用来衡量矩阵的稀疏性。我们可用核范数来约束模型的复杂度,防止过拟合。

∣ ∣ X ∣ ∣ ∗ = t r ( X T X ) = ∣ ∣ U ∣ ∣ 1 ||X||_{*} = tr(\sqrt{X^{T}X})=||U||_{1} ∣∣X=tr(XTX )=∣∣U1

其中,U是A的奇异值分解(SVD)的左奇异矩阵, ∣ ∣ U ∣ ∣ 1 ||U||_{1} ∣∣U1表示其L1范数,核范数非负。

该范数常被用于约束矩阵的低秩,对于稀疏性质的数据而言,其矩阵是低秩且会包含大量冗余信息,这些信息可被用于恢复数据和提取特征。

A.norm(p='nuc')

核范数

1.5 距离(向量距离)

PyTorch距离API

torch.pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False)

其中,input表示输入,p表示距离类型(默认为l2距离)

向量距离

1.5.1 l 1 \mathscr{l_1} l1距离

曼哈顿距离(L1距离):在n维空间中,两点各坐标数值差绝对值之和。
d 1 = ∑ i = 1 n ∣ x i − y i ∣ d_{1}=\sum_{i=1}^{n}|x_{i} - y_{i}| d1=i=1nxiyi

torch.pairwise_distance(x, y, p=1)

L1距离

1.5.2 l 2 \mathscr{l_2} l2距离

欧几里得距离(L2距离):在n维空间中,两点各坐标数值差绝对值平方和的平方根。
d 2 = ∑ i = 1 n ( x i − y i ) 2 = ( ∑ i = 1 n x i 2 − y i ) 2 ) 1 2 d_{2}=\sqrt{\sum_{i=1}^{n}(x_{i} - y_{i})^{2}}=(\sum_{i=1}^{n}x_{i}^{2} - y_{i})^{2})^{\frac{1}{2}} d2=i=1n(xiyi)2 =(i=1nxi2yi)2)21

torch.pairwise_distance(x, y, p=2)

L2距离

1.5.3 l ∞ \mathscr{l_\infty} l距离

切比雪夫距离(L∞距离):在n维空间中,两点各坐标数值差绝对值的最大值。
d ∞ = lim ⁡ p → ∞ ∑ i = 1 n ∣ x i − y i ∣ p p = lim ⁡ p → ∞ ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p = max ⁡ ( ∣ x i − y i ∣ ) d_{\infty}=\lim_{p\to \infty}\sqrt[p]{\sum_{i=1}^{n}|x_{i} - y_{i}|^{p}}=\lim_{p\to \infty}(\sum_{i=1}^{n}|x_{i} - y_{i}|^{p})^{\frac{1}{p}}=\max(|x_{i} - y_{i}|) d=plimpi=1nxiyip =plim(i=1nxiyip)p1=max(xiyi)

我们已经发现了距离间的规律,可用如下公式表示所有向量距离:
d p = ∑ i = 1 n ∣ x i − y i ∣ p p = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 p d_{p}=\sqrt[p]{\sum_{i=1}^{n}|x_{i} - y_{i}|^{p}}=(\sum_{i=1}^{n}|x_{i} - y_{i}|^{p})^{\frac{1}{p}} dp=pi=1nxiyip =(i=1nxiyip)p1

  • 当 p = 1 时,上式表示 曼哈顿距离
  • 当 p = 2 时,上式表示 欧几里得距离
  • 当 p → ∞ 时,上式表示 切比雪夫距离

1.6 余弦相似度

余弦相似度:又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。

s i m i l a r i t y = c o s ( θ ) = a ⋅ b ∣ ∣ a ∣ ∣ ⋅ ∣ ∣ b ∣ ∣ = ∑ i = 1 n a i × b i ∑ i = 1 n ( a i ) 2 × ∑ i = 1 n ( b i ) 2 similarity=cos(\theta)=\frac{\boldsymbol{a}·\boldsymbol{b}}{||\boldsymbol{a}||·||\boldsymbol{b}||}=\frac{\sum_{i=1}^{n}a_{i}×b_{i}}{\sqrt{\sum_{i=1}^{n}(a_{i})^{2}}×\sqrt{\sum_{i=1}^{n}(b_{i})^{2}}} similarity=cos(θ)=∣∣a∣∣∣∣b∣∣ab=i=1n(ai)2 ×i=1n(bi)2 i=1nai×bi

PyTorch余弦相似度API

torch.cosine_similarity(x1, x2, dim=1, eps=1e-8)

代码示例如下:

a = torch.tensor([1., 2, 3])
b = torch.tensor([2., 3, 4])
# 'Tensor' object has no attribute 'cosine_similarity'
# Tensor类型对象未内置cosine_similarity方法,需按如下方式调用
torch.cosine_similarity(a, b, dim=0)

余弦相似度

1.7 矩阵分解

矩阵分解:将矩阵拆解为数个矩阵的乘积

1.7.1 矩阵三角分解(LR / LU分解)

三角分解:最常见的一种分解方式,便于我们求原矩阵的行列式、逆矩阵等。

1.7.2 矩阵正交三角分解(QR分解)

正交三角分解:矩阵先经过正交相似变化成为Hessenberg矩阵,再应用QR方法求特征值和特征向量。它是将矩阵分解成一个正规正交矩阵Q与上三角形矩阵R,所以称为QR分解法,与此正规正交矩阵的通用符号Q有关。

1.7.3 矩阵特征值分解(EVD分解)

特征值分解:亦称谱分解(Spectral Decomposition),将矩阵分解成特征值和特征向量表示的矩阵乘法的形式。

定义 A A A是一个n×n方阵,且有n个线性无关的特征向量 q i ( i = 1 , . . . , n ) q_{i}(i=1,...,n) qi(i=1,...,n),可将 A A A分解为:
A = Q Λ Q − 1 A=Q \Lambda Q^{-1} A=QΛQ1
其中,Q是n×n方针,且第i列为A的特征向量 q i q_{i} qi Λ \Lambda Λ是对角矩阵,其对角线上的元素对应特征值,即 Λ i i = λ i \Lambda_{ii}=\lambda_{i} Λii=λi

只有可对角化矩阵(满秩)才能作特征分解。

1.7.4 矩阵奇异值分解(SVD分解)

定义 A A A是一个m×n实矩阵,存在一个分解使得 A = U Σ V T A=U \Sigma V^{T} A=UΣVT
其中, U U U是m×m阶正交矩阵,$\Sigma 是 m × n 阶非负实数对角矩阵, 是m×n阶非负实数对角矩阵, m×n阶非负实数对角矩阵,V$是n×n阶正交矩阵。

奇异值分解使得非方阵也能进行分解,由于 A A T AA^{T} AAT必定为实对称矩阵,对它进行特征值分解,被称作对A进行奇异值分解。

其中, U U U V V V均为正交矩阵, Σ \Sigma Σ是对角矩阵,根据特征值分解可以得到具体说明如下:

  • U U U被称为A的左奇异矩阵,其列组成的向量是方阵 A A T AA_{T} AAT的特征向量,亦称 A A A的左奇异向量。
  • V V V被称为A的右奇异矩阵,其列组成的向量是方阵 A A T AA_{T} AAT的特征向量,亦称 A A A的右奇异向量。
  • Σ \Sigma Σ对角线上的元素 σ i i \sigma_{ii} σii即为A的奇异值,它们等于 A A T AA_{T} AAT A T A A_{T}A ATA特征值的平方根( σ = λ \sigma=\sqrt{\lambda} σ=λ ),行对应 U U U的列向量,列对应 V V V的列向量。

奇异值分解的代码如下:

A = torch.tensor([[1., 2., 3., 4.],[2., 3., 4., 5.],[3., 4., 5., 6.]])
A.svd()

奇异值分解

1.8 降维

1.8.1 基础操作

1.8.1.1 求和

我们可对张量所有元素求和:

x = torch.arange(6, dtype=torch.double)
x, x.sum()

求和

还可以指定按列/行元素求和:

A = torch.arange(20, dtype=torch.double).reshape(5, 4)

A_sum_axis0 = A.sum(axis=0)     # 将矩阵列向量求和(沿着行挨个列向量求和)
A_sum_axis1 = A.sum(axis=1)     # 将矩阵行向量求和(沿着列挨个行向量求和)
A_sum = A.sum(axis=[0, 1])      # 沿着行、列对矩阵求和,等价于对矩阵所有元素求和
A_sum_axis0, A_sum_axis1, A_sum

按行/列求和

1.8.1.2 平均值

同样,我们可对张量所有元素求平均,也可以指定按列/行元素求平均:

A = torch.arange(20, dtype=torch.double).reshape(5, 4)

A_mean = A.mean()    # 全部元素求平均
A_mean0 = A.mean(axis=0)     # 将矩阵列向量求平均(沿着行挨个列向量求平均)
A_mean1 = A.mean(axis=1)     # 将矩阵行向量求平均(沿着列挨个行向量求平均)
A_mean, A_mean0, A_mean1

求平均值

1.8.2 PCA主成分分析

PCA(principal components analysis)主成分分析,亦称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。

1.8.3 稀疏矩阵压缩

仅存储矩阵中的非0元素,同时存储该元素所在矩阵中的行标和列标。

其中常用的有:按列压缩(CSC, Compressed sparse column)、按行压缩(CSR, Compressed sparse row)等。

2. 微积分

在深度学习中,我们“训练模型”使其变得更好,即最小化一个损失函数(loss function)

我们“训练”模型只能将模型与我们实际见到的数据相拟合,因此可将此任务分解为两个关键问题:

  • 优化(optimization):用模型拟合观察数据的过程。
  • 泛化(generalization):指导生成有效性超出用于训练的数据集本身的模型。

2.1 导数 & 微分

假设有一个函数 f : R → R f:\mathbb{R}→\mathbb{R} f:RR,其输入和输出都是标量。若其导数存在,则极限被定义为:
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h→0} \frac{f(x+h)-f(x)}{h} f(x)=h0limhf(x+h)f(x)
f ′ ( a ) f'(a) f(a)存在,则称f在a处可微(differentiable)

2.2 偏导数

在深度学习中,通常需要用到多变量,我们将其思想推广到多元函数(multivariate function)

y = f ( x 1 , x 2 , ⋯   , x n ) y = f(x_1,x_2,\cdots,x_n) y=f(x1,x2,,xn),则y关于第i个参数x_i的偏导数(Partial Derivative)为:

∂ y ∂ x i = lim ⁡ h → 0 f ( x 1 , ⋯   , x i − 1 , x i + h , x i + 1 , ⋯   , x n ) − f ( x 1 , ⋯   , x i , ⋯   , x n ) h \frac{\partial y}{\partial x_i}=\lim_{h→0} \frac{f(x_1, \cdots, x_{i-1}, x_i+h,x_{i+1},\cdots, x_n)-f(x_1,\cdots,x_i,\cdots,x_n)}{h} xiy=h0limhf(x1,,xi1,xi+h,xi+1,,xn)f(x1,,xi,,xn)

2.3 梯度

假设有一个函数 f : R n → R f:\mathbb{R^n}→\mathbb{R} f:RnR,其输入是一个n维向量 x = [ x 1 , x 2 , ⋯   , x n ] \boldsymbol{x}=[x_1, x_2, \cdots, x_n] x=[x1,x2,,xn],其输出是一个标量,则函数 f ( x ) f(\boldsymbol{x}) f(x)相对于 x \boldsymbol{x} x的梯度是一个包含n个偏导数的向量:
∇ x f ( x ) = [ ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , ⋯   , ∂ f ( x ) ∂ x n ] \nabla_{x}f(\boldsymbol{x})=[\frac{\partial f(\boldsymbol{x})}{\partial x_1},\frac{\partial f(\boldsymbol{x})}{\partial x_2},\cdots,\frac{\partial f(\boldsymbol{x})}{\partial x_n}] xf(x)=[x1f(x),x2f(x),,xnf(x)]

假设 x \boldsymbol{x} x为n维向量,在对多元函数求微分时经常使用以下规则:

  • 对于所有 A ∈ R m × n A \in \mathbb{R}^{m×n} ARm×n,都有 ∇ x A x = A T \nabla_{x}Ax=A^{T} xAx=AT
  • 对于所有 A ∈ R n × m A \in \mathbb{R}^{n×m} ARn×m,都有 ∇ x x T A = A \nabla_{x}x^{T}A=A xxTA=A
  • 对于所有 A ∈ R n × n A \in \mathbb{R}^{n×n} ARn×n,都有 ∇ x x T A x = ( A + A T ) x \nabla_{x}x^{T}Ax=(A+A^{T})x xxTAx=(A+AT)x
  • ∇ x ∣ ∣ x ∣ ∣ 2 = ∇ x x T x = 2 x \nabla_{x}||\boldsymbol{x}||^{2}=\nabla_{x}\boldsymbol{x}^{T}\boldsymbol{x}=2\boldsymbol{x} x∣∣x2=xxTx=2x

同样,对于任何矩阵 X X X,都有 ∇ X ∣ ∣ X ∣ ∣ F 2 = 2 X \nabla_{X}||X||_{F}^2=2X X∣∣XF2=2X


例如,定义一个函数:
f ( x ) = k T x + b f(\boldsymbol{x})=\boldsymbol{k^{T}x} + \boldsymbol{b} f(x)=kTx+b
其中:
k T = [ 1 , 3 , 5 ] b T = [ 1 , 2 , 3 ] k^{T}=[1,3,5] \\ b^{T}=[1,2,3] kT=[1,3,5]bT=[1,2,3]
我们可采用自动微分的方式对示例这种函数求梯度,具体可参考下面两例。

2.4 Hessian矩阵

Hessian矩阵,中文译名为海森矩阵。

假设有一个函数 f : R n → R f:\mathbb{R^n}→\mathbb{R} f:RnR,其Hessian矩阵定义如下:
H ( f ) = [ ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ∂ x 1 ∂ x n ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ⋯ ∂ 2 f ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ∂ x n ∂ x 1 ∂ 2 f ∂ x n ∂ x 2 ⋯ ∂ 2 f ∂ x n 2 ] H(f)= \begin{bmatrix} \frac{\partial^{2} f}{\partial x_1^{2}} & \frac{\partial^{2} f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^{2} f}{\partial x_1 \partial x_n} \\ \frac{\partial^{2} f}{\partial x_2 \partial x_1} & \frac{\partial^{2} f}{\partial x_2^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_n \partial x_1} & \frac{\partial^{2} f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^{2} f}{\partial x_n^{2}} \end{bmatrix} H(f)= x122fx2x12fxnx12fx1x22fx222fxnx22fx1xn2fx2xn2fxn22f

  • 当H为正定矩阵时,则该点是极小值点
  • 当H为负定矩阵时,则该点是极大值点
  • 当H为不定矩阵时,则该点是非极值点
  • 当H为半正定矩阵/半负定矩阵时, f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn)则该点是 “可疑”极值点,需结合其他方法判定。

定义一个函数:
f ( x ) = b T x + 1 2 x T A x f(\boldsymbol{x})=\boldsymbol{b^{T}x}+\frac{1}{2} \boldsymbol{x^{T}Ax} f(x)=bTx+21xTAx
其中:
b T = [ 1 , 3 , 5 ] A = [ − 5 − 3 − 0.5 − 3 − 2 0 − 0.5 0 − 0.5 ] b^{T}=[1,3,5] \\ A = \begin{bmatrix} -5 & -3 & -0.5 \\ -3 & -2 & 0 \\ -0.5 & 0 & -0.5 \end{bmatrix} bT=[1,3,5]A= 530.53200.500.5

本例代码采用自动微分的方式,对上述函数对上述函数原点处的Hessian矩阵进行计算:

import torch

# 函数定义
x = torch.tensor([0., 0, 0], requires_grad=True)
b = torch.tensor([1., 3, 5])
A = torch.tensor([[-5, -3, -0.5],[-3, -2, 0],[-0.5, 0, -0.5]])


def func(x):
    return b @ x + 0.5 * x @ A @ x


"""两次梯度求解Hessian矩阵"""
# 计算一阶导数,因为我们需要继续计算二阶导数,所以创建并保留计算图
grad = torch.autograd.grad(func(x), x, retain_graph=True, create_graph=True)
# 定义Print数组,为输出和进一步利用Hessian矩阵作准备
p = torch.tensor([])
for anygrad in grad[0]:  # torch.autograd.grad返回的是元组
    p = torch.cat((p, torch.autograd.grad(anygrad, x, retain_graph=True)[0]))
print(p.view(x.size()[0], -1))


"""API求解Hessian矩阵"""
print(torch.autograd.functional.hessian(func, x))

Hessian矩阵

2.5 Jacobian矩阵

Jacobian矩阵,中文译名为雅可比矩阵。

假设有一个函数 f : R n → R m \boldsymbol{f}:\mathbb{R^n}→\mathbb{R^m} f:RnRm,其由多个函数组成:
f = [ f 1 ( x 1 , x 2 , ⋯   , x n ) f 2 ( x 1 , x 2 , ⋯   , x n ) ⋮ f m ( x 1 , x 2 , ⋯   , x n ) ] \boldsymbol{f} = \begin{bmatrix} f_{1}(x_1, x_2, \cdots, x_n)\\ f_{2}(x_1, x_2, \cdots, x_n)\\ \vdots \\ f_{m}(x_1, x_2, \cdots, x_n)\\ \end{bmatrix} f= f1(x1,x2,,xn)f2(x1,x2,,xn)fm(x1,x2,,xn)

其雅可比矩阵定义为:
J ( f ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 ⋯ ∂ f m ∂ x n ] J(\boldsymbol{f}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} J(f)= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm

定义一个函数( f : R 3 → R 4 \boldsymbol{f}:\mathbb{R^3}→\mathbb{R^4} f:R3R4):

f ( x ) = [ f 1 ( x 1 , x 2 , x 3 ) f 2 ( x 1 , x 2 , x 3 ) f 3 ( x 1 , x 2 , x 3 ) f 4 ( x 1 , x 2 , x 3 ) ] = [ x 1 5 x 3 4 x 2 − 2 x 3 x 3 ] \boldsymbol{f}(\boldsymbol{x})=\begin{bmatrix} f_{1}(x_1,x_2,x_3) \\ f_{2}(x_1,x_2,x_3) \\ f_{3}(x_1,x_2,x_3) \\ f_{4}(x_1,x_2,x_3) \\ \end{bmatrix} =\begin{bmatrix} x_1 \\ 5x_3 \\ 4x_2-2x_3 \\ x_3 \\ \end{bmatrix} f(x)= f1(x1,x2,x3)f2(x1,x2,x3)f3(x1,x2,x3)f4(x1,x2,x3) = x15x34x22x3x3

import torch

# 函数定义
x = torch.tensor([1., 1, 1], requires_grad=True)
A = torch.tensor([[1.,0,0],[0,0,5],[0,4,-2],[0,0,1]])

def func(x):
    return A @ x

"""梯度重组矩阵求解Jacobian矩阵"""
jac = torch.tensor([])
# 分别计算f[i]对x的梯度,再拼接为矩阵
for j in func(x):
    jac = torch.cat((jac, torch.autograd.grad(j, x, retain_graph=True)[0]))
print(jac.view(func(x).size()[0], -1))


"""API求解Jacobian矩阵"""
print(torch.autograd.functional.jacobian(func, x))

Jacobian矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值