关于sklearn绘制混淆矩阵的问题

本文探讨了在使用sklearn库的confusion_matrix函数时遇到的矩阵数据错位问题,分析了3分类问题的混淆矩阵示例,并提出了自定义函数my_confusion_matrix作为替代方案。该函数通过遍历标签和预测值来正确计算混淆矩阵,确保了数据的准确性。作者建议在使用库函数时要仔细检查结果,尤其是涉及模型评估的关键指标。
摘要由CSDN通过智能技术生成

sklearn有一个绘制混淆矩阵的函数叫做 confusion_matrix(label,predict)

其目的是根据标签和模型预测值来绘制出混淆矩阵,label就是实际值,predict是预测值,格式要求是元素为str格式的列表,比如 label = [ '0' ,'1' ,'2'] 表示的就是三个样本的标签,0,1,2分别表示的是其对应的分类编号,同时也是最终混淆矩阵的行索引(后面会展开讲讲),pedict的样本顺序必须与之对应,通过一一按顺序成组比对label和predict的类别获得最终的结果。

最终结果如下图示意:

图1.三分类问题混淆矩阵示意图

上图假设了一个3分类的问题,行索引代表的是实际值,列索引代表的是预测值,矩阵中的数字则代表对应的样本数量,以第二列[1, 7, 1]为例,7的位置是[1][1],即label=predict,分类正确,1类被分对的样本有7个,所有对角线上的数字表示正确分类的数量,第一个1的位置是[0][1],表示样本是第0类,但是模型把它分为第1类,这样的样本有1个,依次类推。

如果想研究模型的错误,往往不关注对角上的元素,可以全部为0ÿ

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值