sklearn有一个绘制混淆矩阵的函数叫做 confusion_matrix(label,predict)
其目的是根据标签和模型预测值来绘制出混淆矩阵,label就是实际值,predict是预测值,格式要求是元素为str格式的列表,比如 label = [ '0' ,'1' ,'2'] 表示的就是三个样本的标签,0,1,2分别表示的是其对应的分类编号,同时也是最终混淆矩阵的行索引(后面会展开讲讲),pedict的样本顺序必须与之对应,通过一一按顺序成组比对label和predict的类别获得最终的结果。
最终结果如下图示意:
图1.三分类问题混淆矩阵示意图
上图假设了一个3分类的问题,行索引代表的是实际值,列索引代表的是预测值,矩阵中的数字则代表对应的样本数量,以第二列[1, 7, 1]为例,7的位置是[1][1],即label=predict,分类正确,1类被分对的样本有7个,所有对角线上的数字表示正确分类的数量,第一个1的位置是[0][1],表示样本是第0类,但是模型把它分为第1类,这样的样本有1个,依次类推。
如果想研究模型的错误,往往不关注对角上的元素,可以全部为0ÿ