魔改算法——YOLOv5/YOLOv7改进系列汇总

魔改YOLO系列算法改进:

改进YOLOv5/YOLOv7——魔改YOLOv5/YOLOv7提升检测精度__加勒比海带66的博客

目标检测算法——YOLOv7训练自己的数据集(保姆级教程)

目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2

目标检测算法——YOLOv5/YOLOv7改进结合BotNet(Bottleneck Transformer)

目标检测算法——YOLOv5/YOLOv7改进之结合SIoU

目标检测算法——YOLOv5/YOLOv7改进之结合轻量化网络MobileNetV3

目标检测算法——YOLOv5/YOLOv7改进之结合MobileOne结构

目标检测算法——YOLOv5/YOLOv7改进之结合ConvNeXt结构

目标检测算法——YOLOv5/YOLOv7改进之结合无参注意力SimAM

目标检测算法——YOLOv5/YOLOv7改进之更换FReLU激活函数

目标检测算法——YOLOv5/YOLOv7改进之GSConv+Slim Neck

目标检测算法——YOLOv5/YOLOv7改进之结合CBAM

目标检测算法——YOLOv5/YOLOv7改进之结合GAMAttention

目标检测算法——YOLOv5/YOLOv7改进之结合NAMAttention

目标检测算法——YOLOv5/YOLOv7改进之结合Criss-Cross Attention

目标检测算法——YOLOv7改进|增加小目标检测层

目标检测算法——遥感影像数据集资源汇总(附下载链接)

目标检测算法——行人检测&人群计数数据集汇总(附下载链接)

目标检测算法——小目标检测相关数据集(附下载链接)

目标检测算法——YOLOv5如何改变bbox检测框的粗细大小

目标检测算法——助力涨点 | YOLOv5改进结合Alpha-IoU

目标检测算法——为什么我选择PyTorch?

论文投稿指南——中文核心期刊

论文投稿指南——SCI投稿各阶段邮件模板

论文投稿指南——收藏|SCI写作投稿发表全流程

目标检测算法——10种深度学习框架介绍

论文投稿指南——计算机视觉 (Computer Vision) 顶会归纳

参考博文:全部内容均出自———— 加勒比海带66

非常值得关注的CSDN博主!!!

YOLO(You Only Look Once)是一种实时目标检测算法YOLOv8、YOLOv7YOLOv5是在YOLO算法基础上进行了改进的版本。 YOLOv8是YOLOv7改进版本,主要的改进点在于改进网络架构和骨干网络。YOLOv8使用了Darknet53骨干网络,通过堆叠多个卷积层来提取特征。此外,YOLOv8还引入了SPP结构(Spatial Pyramid Pooling)来捕捉不同尺度的特征。它还采用了FPN(Feature Pyramid Network)来融合多层次的特征信息,以增加目标检测的准确性和鲁棒性。 YOLOv7相较于YOLOv8,改进点在于网络架构和损失函数。YOLOv7使用了YOLO9000的骨干网络Darknet19,并使用了Anchor Box来预测目标位置和大小。此外,YOLOv7还引入了Focal Loss来解决目标检测中类别不平衡的问题。Focal Loss能够更加关注困难样本,使得目标检测更加准确。 YOLOv5YOLO的最新改进版本,相较于YOLOv4,它主要改进了网络架构和训练策略。YOLOv5使用了CSPDarknet53作为骨干网络,它可以提取更加丰富的特征。此外,YOLOv5还引入了PANet结构来融合不同层次的特征。此外,YOLOv5采用了自适应的训练策略,可以根据不同的目标检测任务自动调整模型大小和数据增强程度,从而提升了目标检测的性能和速度。 综上所述,YOLOv8、YOLOv7YOLOv5都是在YOLO算法基础上进行了不同程度的改进,通过改进网络架构、骨干网络和训练策略等方面来提升目标检测的准确性和效率。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值