Domain Agnostic Learning with Disentangled Representations

本文探讨了ICML2019论文《Domain Agnostic Learning with Disentangled Representations》中提出的使用解纠缠技术解决领域自适应问题。通过分解domain特征为domain-specific和domain-invariant部分,并应用互信息和对抗学习,提取出无关领域且包含语义信息的特征。此外,介绍了使用重构和分类损失来强化学习过程,旨在提取出domain-invariant-class-special特征,以实现更有效的跨领域预测。
摘要由CSDN通过智能技术生成

Domain Agnostic Learning with Disentangled Representations

第一章 领域未知的表示学习



前言

Domain Agnostic Learning with Disentangled Representations 为ICML2019的论文,主要用接纠缠解决domain agnostic。 没看之前,以为是一个multi-source to single-target.
论文是single-source 去预测 multi-target。而且在训练过程中,使用到了target数据,其实是一个领域自适应问题,不是zero-shot的问题。

在这里插入图片描述这篇论文的主要流程。


一、方法介绍和相关代码

本文使用了解纠的方法,首先分解了domain feature 为domain-special 和 domain-invariant,关于domain的解纠缠使用了互信息和对抗反梯度domain分类。

然后基于domain-invariant的特征进行语义分类,然后语义分类结果的对抗,获取了无关语义的特征提取器。其中使用了domain-invariant 和 class-inrariant的互信息,让两种特征尽量不相关,最后保留了domain-invariant-class-special feature进行分类。

其中还使用了reconstruction的方法,希望能还原以前的数据,这样的方法一般可以用在监督学习中,供下游任务进行分类使用。。

二、解纠缠代码

首先论文先用generate 生成了F1这样的base feature,然后利用三个神经网络进行解纠缠:

 self.C = nn.ModuleDict({
   
            'ds': Classifier(source=source, target=target),   ## domain-special
            'di': Classifier(source=source, target=target),   ## domain-inviriant
            'ci': Classifier(source=source, target=target)    ## class-inviriant
        })  

其实是一个神经网络映射到三个空间,接下来三个空间分别进入不同的分类器和loss进行约束。

2.1 约束1

交叉熵,对三个解纠缠的特征都进行了分类。

  for key in ['ds', 'di', 'ci']:
      _loss
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值