三维重建
文章平均质量分 77
石榴姐bs
风华绝代石榴姐
展开
-
图像特征提取1
1.1图像特征的分类特征是用来区分图像的最基本的属性,图像特征可以从下面几个方面进行分类。1、获取方式:人工特征和自然特征。1.1.1点、线、面特征1、点特征是最常用和重要的特征,大部分局部特征都是在点特征的基础上提出的。点特征包括物体边缘点、角点、线交叉点等,其中角点是最具代表性的。角点常用的提取方法如下:1)基于曲率提取法2)基于灰度提取法3)基原创 2015-08-07 15:06:54 · 995 阅读 · 0 评论 -
三维重建算法
1、三维重建的基本概念1.1摄影空间1.2摄像机成像模型1.3对极几何约束1.3.1对极几何1.3.2基本矩阵1.3.3本质矩阵原创 2015-08-05 22:15:55 · 9727 阅读 · 3 评论 -
影像匹配算法
主要的匹配算法可以分为局部算法和全局算法两大类。1、局部算法局部算法主要有块匹配算法、基于梯度的优化算法和基于特征的匹配算法等。1、块匹配算法在局部小区域内寻找最佳匹配使匹配误差最小,通常使用规范化互相关方法,包括规范化互相关、平方差之和、规范化平方差之和、绝对差之和方法等。2、基于梯度的优化算法在局部区域内通过最小化图像间平方差的和来实现匹配。该算法假设场景中同一原创 2015-08-05 21:47:46 · 7576 阅读 · 0 评论 -
图像特征提取2
特征通常包括区域特征、边缘特征和点特征。1.1区域特征区域特征可能是具有适当大小的高对比度区域的投影,例如建筑物、水库等。区域的重心对于尺度变化、旋转是不变量,并且对于随机噪声和亮度变化具有稳健性。区域特征通过影像分割算法进行检测。有人曾提出了一种逐步求精的处理过程来改善匹配质量。将图像分割和匹配相结合,通过迭代取得更好的匹配方法。1.2边缘特征边缘线可以是一般线段、目原创 2015-08-05 21:35:20 · 1010 阅读 · 0 评论 -
三维重建之视图差的计算--SGBM和GC算法
最近一直在做三维重建的毕业设计,看了好多的算法、论文和代码。在查找资料的过程中发现很多人上传的东西真的是没法用,而且全都要积分。我虽说是一个水货,也不致力于从事着方面的研究和工作,但是为了毕设也没办法,目前调通了很多算法,虽然说不清原理,但是还是把代码创传上来,供大家使用。一、win32项目工程,stereo vision11、头文件:#include "stdafx.h"#原创 2016-04-15 17:20:08 · 8824 阅读 · 6 评论