1、三维重建的基本概念
1.1摄影空间
1.1.1齐次坐标
1.1.2射影空间与射影变化
一个n维射影空间R”的射影基由此空间中n+2个点组成,且其中任意n+1个点不线性相关。从而对于射影空间R”中任一点x可以用标准射影基中任意n+1个的线性组合来表示。
1.1.2.1平面射影
1.1.2.2三维射影
1.2摄像机成像模型
摄影机是三维空间物体与二维图像之间的一种映射,成像模型就是三维空间物体到二维视平面的投影关系。
1.2.1针孔成像
针孔摄像机模型假设图像坐标在两个轴向上具有等尺度的欧氏坐标。
1.3.1对极几何
对极几何(EPipolarGeomeyrt)是两幅图像之间内在的射影几何。它独立于景物结构,只依赖于摄像机内参数和相对姿态。
两幅图像之间的对极几何是图像平面与以基线为轴的平面束的交线的几何。
是一个秩为2的3*3矩阵。
如果点对应问题解决了,则基本矩阵包含了从一对图像中可以恢复出来的所有信息。基本矩阵具有如下性质:
2.三维重建与模型分析
2.1三维重建的基本算法
2.1.1射影重建
可以求出空间点在投影矩阵下的三维射影坐标
2.2.2欧氏重建
2.2实时三维重建
2.2.1光束法平差三维重建
光束法平差是一个理想的方法,其优点是容忍数据的缺失并提供真正的最大似然估计,同时,该方法允许对每一个测量值指派单个协方差,并且可以扩展到先验估计和摄像机参数约束或者点的位置约束。它的缺点是需要提供一个好的初始值。另外,由于可能涉及大量参数,光束法可能会成为一个非常大的极小化问题。
使用光束法必须首先计算初始解。
光束法平差需要较为精确的初始参数才能获得较好的效果。如果没有可靠的参数初值,该算法会得到错误结果。
解决这个问题的一个途径是研究初值估计算法。另一个途径是引入其它约束来增加可靠性并简化计算。
2.2.2实时Kalman滤波修正算法
系统响应时间是三维重建算法的一个重要性能指标。
Kalmna滤波修正算法能够保证在增加、减少观测量时,不必重新进行整个观测量的平差计算,因此是一种较好的实时响应算法。
2.2.3粗差检测与剔除
2.3平面图约束三维重建
2.3.1基本假设
2.3.2平面约束算法
通过已知的平面图,可以有效的重建三维目标。
2.3.3单视图约束
通过使用单视图约束可以获得摄像机标定参数,摄像机姿态和平面位置。但是不能确定摄像机的高度(Z坐标)和三维目标的结构。
2.3.4多视图约束
2.4标准立体模型误差分析
2.4.1标准立体成像模型
2.4.2模型误差分析
2.5汇聚立体模型误差分析
2.5.1汇聚立体成像模型
2.5.2模型误差分析
3、分层三维重建
三维重建是相机成像过程的逆过程,即从像素坐标系中某一像素点反向映射成世界坐标系中的空间点。
射影重建是分层重建的第一阶段,需要最少的约束信息。一旦获得高精度的基本矩阵,就可以进行射影重建。通过两视图间的像点对应关系可以建立基本矩阵F。通过基本矩阵可以构造出投影矩阵。
仿射重建的本质是用某些方法定位无穷远平面。
欧氏重建的关键是确定绝对二次曲线。由于绝对二次曲线Ω∞ 是无穷远平面上的一条平面二次曲线,因此确定绝对二次曲线就意味着确定无穷远平面。
解决这个问题的一个途径是研究初值估计算法。另一个途径是引入其它约束来增加可靠性并简化计算。