确实,秒杀和抢购是电商平台上非常常见的营销策略。它们通常用于在短时间内吸引大量用户,增加销售额。
秒杀通常是指在特定时间段内,以非常低的价格销售商品。这个价格可能是远低于正常售价的,甚至可能是免费的。这种活动通常会吸引大量用户在同一时间访问和购买商品,从而增加网站的流量和知名度。
抢购则是指用户在特定时间段内可以以一定的折扣或优惠价格购买商品。这种活动通常会有时间限制,而且数量有限,鼓励用户尽快下单购买。
无论是秒杀还是抢购,它们都能够吸引大量用户,增加销售额。但是,它们也可能带来一些问题,比如服务器负载过大、用户体验下降等。因此,电商平台需要合理规划和管理这些活动,以确保系统的稳定性和用户的良好体验。
电商平台在实施秒杀和抢购活动时,应充分考虑以下几个方面:
首先,电商平台需要对活动进行分类管理。可以将商品分为不同的类别,针对不同类别设置不同的秒杀或抢购活动。这样可以有效分散用户流量,避免服务器过度负载,提高系统的稳定性。
其次,设定合理的活动时间和数量限制。秒杀和抢购活动的时长不宜过长,以免用户疲劳和降低活动效果。同时,每场活动的商品数量也要有限制,以保证活动的稀缺性和吸引力。
第三,加强用户引导和教育。通过平台公告、温馨提示等方式,告知用户活动规则和注意事项,避免用户在活动过程中产生误解和纠纷。同时,教育用户合理消费,避免盲目跟风,造成不必要的浪费。
第四,优化平台技术架构。针对秒杀和抢购活动可能带来的大量流量冲击,电商平台需要加强服务器和网络带宽的扩容,确保活动期间的系统稳定运行。
第五,关注用户体验。在活动期间,电商平台要关注用户反馈,及时解决可能出现的问题,如库存不足、支付失败等。同时,通过优化购物流程,提高用户购买成功率,提升用户满意度。
总之,秒杀和抢购作为电商平台的重要营销手段,在吸引用户和提高销售额方面具有显著效果。但电商平台也要充分考虑活动可能带来的负面影响,通过合理规划和管理,实现营销目标与用户体验的平衡。
在未来,随着科技的发展和用户需求的多样化,电商平台可以尝试更多创新性的营销策略,如个性化推荐、互动营销等。这些策略既能满足用户需求,提高购买意愿,又能提升平台的竞争力和市场份额。同时,电商平台还需不断优化运营管理,提升服务水平,为用户提供更加优质的购物体验。这样才能在激烈的市场竞争中立于不败之地。
电商的秒杀和抢购,对我们来说,都不是一个陌生的东西。然而,从技术的角度来说,这对于Web系统是一个巨大的考验。当一个Web系统,在一秒钟内收到数以万计甚至更多请求时,系统的优化和稳定至关重要。这次我们会关注秒杀和抢购的技术实现和优化,同时,从技术层面揭开,为什么我们总是不容易抢到火车票的原因?
一、大规模并发带来的挑战
在过去的工作中,我曾经面对过5w每秒的高并发秒杀功能,在这个过程中,整个Web系统遇到了很多的问题和挑战。如果Web系统不做针对性的优化,会轻而易举地陷入到异常状态。我们现在一起来讨论下,优化的思路和方法哈。
1.请求接口的合理设计
一个秒杀或者抢购页面,通常分为2个部分,一个是静态的HTML等内容,另一个就是参与秒杀的Web后台请求接口。
通常静态HTML等内容,是通过CDN的部署,一般压力不大,核心瓶颈实际上在后台请求接口上。这个后端接口,必须能够支持高并发请求,同时,非常重要的一点,必须尽可能“快”,在最短的时间里返回用户的请求结果。为了实现尽可能快这一点,接口的后端存储使用内存级别的操作会更好一点。仍然直接面向MySQL之类的存储是不合适的,如果有这种复杂业务的需求,都建议采用异步写入。
当然,也有一些秒杀和抢购采用“滞后反馈”,就是说秒杀当下不知道结果,一段时间后才可以从页面中看到用户是否秒杀成功。但是,这种属于“偷懒”行为,同时给用户的体验也不好,容易被用户认为是“暗箱操作”。
2.高并发的挑战:一定要“快”
我们通常衡量一个Web系统的吞吐率的指标是QPS(Query Per Second,每秒处理请求数),解决每秒数万次的高并发场景,这个指标非常关键。举个例子,我们假设处理一个业务请求平均响应时间为100ms,同时,系统内有20台Apache的Web服务器,配置MaxClients为500个(表示Apache的最大连接数目)。
那么,我们的Web系统的理论峰值QPS为(理想化的计算方式):
20500/0.1 = 100000 (10万QPS)
咦?我们的系统似乎很强大,1秒钟可以处理完10万的请求,5w/s的秒杀似乎是“纸老虎”哈。实际情况,当然没有这么理想。在高并发的实际场景下,机器都处于高负载的状态,在这个时候平均响应时间会被大大增加。
就Web服务器而言,Apache打开了越多的连接进程,CPU需要处理的上下文切换也越多,额外增加了CPU的消耗,然后就直接导致平均响应时间增加。因此上述的MaxClient数目,要根据CPU、内存等硬件因素综合考虑,绝对不是越多越好。可以通过Apache自带的abench来测试一下,取一个合适的值。然后,我们选择内存操作级别的存储的Redis,在高并发的状态下,存储的响应时间至关重要。网络带宽虽然也是一个因素,不过,这种请求数据包一般比较小,一般很少成为请求的瓶颈。负载均衡成为系统瓶颈的情况比较少,在这里不做讨论哈。
那么问题来了,假设我们的系统,在5w/s的高并发状态下,平均响应时间从100ms变为250ms(实际情况,甚至更多):
20500/0.25 = 40000 (4万QPS)
于是,我们的系统剩下了4w的QPS,面对5w每秒的请求,中间相差了1w。
然后,这才是真正的恶梦开始。举个例子,高速路口,1秒钟来5部车,每秒通过5部车,高速路口运作正常。突然,这个路口1秒钟只能通过4部车,车流量仍然依旧,结果必定出现大塞车。(5条车道忽然变成4条车道的感觉)
同理,某一个秒内,20*500个可用连接进程都在满负荷工作中,却仍然有1万个新来请求,没有连接进程可用,系统陷入到异常状态也是预期之内。3.重启与过载保护
如果系统发生“雪崩”,贸然重启服务,是无法解决问题的。最常见的现象是,启动起来后,立刻挂掉。这个时候,最好在入口层将流量拒绝,然后再将重启。如果是redis/memcache这种服务也挂了,重启的时候需要注意“预热”,并且很可能需要比较长的时间。
秒杀和抢购的场景,流量往往是超乎我们系统的准备和想象的。这个时候,过载保护是必要的。如果检测到系统满负载状态,拒绝请求也是一种保护措施。在前端设置过滤是最简单的方式,但是,这种做法是被用户“千夫所指”的行为。更合适一点的是,将过载保护设置在CGI入口层,快速将客户的直接请求返回。
互联网正在高速发展,使用互联网服务的用户越多,高并发的场景也变得越来越多。电商秒杀和抢购,是两个比较典型的互联网高并发场景。虽然我们解决问题的具体技术方案可能千差万别,但是遇到的挑战却是相似的,因此解决问题的思路也异曲同工。
个人整理并发解决方案。
a.应用层面:读写分离、缓存、队列、集群、令牌、系统拆分、隔离、系统升级(可水平扩容方向)。
b.时间换空间:降低单次请求时间,这样在单位时间内系统并发就会提升。
c.空间换时间:拉长整体处理业务时间,换取后台系统容量空间。
秒杀和抢购是电商平台上非常常见的营销策略,它们通常用于在短时间内吸引大量用户,增加销售额
于 2021-09-25 09:10:17 首次发布