单变量微分、导数与链式法则

博客:blog.shinelee.me | 博客园 | CSDN

映射是一种对应关系。

函数是一种映射,将变量间的关系形式化为数学描述。

y=f(x)y = f(x),即yyxx的函数,可以是y=2x+1y = 2x + 1,也可以是y=sin(x)y = sin(x)xx的变化将引起yy的变化,xx的变化量x\triangle x导致yy变化y\triangle y,当变化量很小(趋近于0)时,为瞬间变化量,记为dxdxdydy,瞬间变化量之比为瞬间变化率,即dydx\frac{dy}{dx}。瞬间变化率dydx\frac{dy}{dx}乘以xx的瞬间变化量dxdxyy的瞬间变化量dydy

导数(Derivative),是对瞬间变化率的衡量,即dydx\frac{dy}{dx}导数也是函数,衡量每个xx位置处的瞬间变化率。而微分(Differential,differentiation, differential calculus),指的是求导数——通过求瞬间变化量的关系来求导数。

xx为单变量时,导数为

f(a)=dydxx=a=limh0f(a+h)f(a)hf'(a) = \frac{dy}{dx} \rvert _{x=a} = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}
Derivative
每个位置处的导数如下
Derivative

基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数、常数函数。

基本初等函数通过四则运算和复合可以得到复杂函数,其中减法与加法等价,除法与乘法等价:

  1. 加法(减法):f(x)+g(x)f(x)+g(x)
  2. 乘法(除法):f(x)g(x)f(x)g(x)
  3. 复合:f(g(x))f(g(x))

加法的求导可以理解为变化量(率)的叠加,即f+gf' + g'
乘法的求导可以理解为矩形面积的变化率,将f(x)f(x)g(x)g(x)看成矩形的边长,导数为$(f+df)(g+dg)dx\frac{(f + df)(g+dg)}{dx},在dxdx趋近于0时,面积增量为fdg+gdffdg+gdf(忽略了极小项),即导数为fg+fgf'g+fg'。如下

复合函数的求导可以理解为变化率的传递y=f(u)y = f(u)u=g(x)u=g(x)xx的变化引起uu的变化,uu的变化引起yy的变化,即dy=dydudu=dydududxdxdy=\frac{dy}{du} du =\frac{dy}{du} \frac{du}{dx} dxdydx=dydududx\frac{dy}{dx}= \frac{dy}{du} \frac{du}{dx},此为链式法则f(x)=f(g(x))g(x)f'(x) = f'(g(x)) g'(x)。变化量的传递如下:
Chain Rule

可以令xx变化一个极小量如x=0.000001\triangle x=0.000001,带入函数求yy的变化量y\triangle y,用yx\frac{\triangle y}{\triangle x}来估计xx位置的导数,但这无疑是费时费力的,常见函数的导数一般都存在解析形式,如下:
Derivatives of Common Functions

参考

发布了55 篇原创文章 · 获赞 77 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览