给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。
说明:解集不能包含重复的子集。
示例:
输入: nums = [1,2,3]
输出:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
观察全排列/组合/子集问题,它们比较相似,且可以使用一些通用策略解决。
首先,它们的解空间非常大:
-
全排列:N!。
-
组合:N!。
-
子集:2^N,每个元素都可能存在或不存在。
-
在它们的指数级解法中,要确保生成的结果 完整 且 无冗余,有三种常用的方法:
递归
回溯
基于二进制位掩码和对应位掩码之间的映射字典生成排列/组合/子集
相比前两种方法,第三种方法将每种情况都简化为二进制数,易于实现和验证。
此外,第三种方法具有最优的时间复杂度,可以生成按照字典顺序的输出结果。
解法一:递归!利用数学归纳法的思想:
第一个解法是利用数学归纳的思想:假设我现在知道了规模更小的子问题的结果,如何推导出当前问题的结果呢?
具体来说就是,现在让你求 [1,2,3] 的子集,如果你知道了 [1,2] 的子集,是否可以推导出 [1,2,3] 的子集呢?先把 [1,2] 的子集写出来瞅瞅:
[ [],[1],[2],[1,2] ]
你会发现这样一个规律:
subset([1,2,3]) - subset([1,2])
= [3],[1,3],[2,3],[1,2,3]
而这个结果,就是把 sebset([1,2]) 的结果中每个集合再添加上 3。
换句话说,如果 A = subset([1,2]) ,那么:
subset([1,2,3])
= A + [A[i].add(3) for i = 1..len(A)]
这就是一个典型的递归结构嘛,[1,2,3] 的子集可以由 [1,2] 追加得出,[1,2] 的子集可以由 [1] 追加得出,base case 显然就是当输入集合为空集时,输出子集也就是一个空集。
翻译成代码就很容易理解了:
vector<vector<int>> subsets(vector<int>& nums) {
// base case,返回一个空集
if (nums.empty()) return {{}};
// 把最后一个元素拿出来
int n = nums.back();
nums.pop_back();
// 先递归算出前面元素的所有子集
vector<vector<int>> res = subsets(nums);
int size = res.size();
for (int i = 0; i < size; i++) {
// 然后在之前的结果之上追加
res.push_back(res[i]);
res.back().push_back(n);
}
return res;
}
回溯算法:
回溯算法模板:
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
vector<vector<int>> res;
vector<vector<int>> subsets(vector<int>& nums) {
// 记录走过的路径
vector<int> track;
backtrack(nums, 0, track);
return res;
}
void backtrack(vector<int>& nums, int start, vector<int>& track) {
res.push_back(track);
for (int i = start; i < nums.size(); i++) {
// 做选择
track.push_back(nums[i]);
// 回溯
backtrack(nums, i + 1, track);
// 撤销选择
track.pop_back();
}
}