poj3295——Tautology(构造法)

Description

WFF ‘N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:

p, q, r, s, and t are WFFs
if w is a WFF, Nw is a WFF
if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
The meaning of a WFF is defined as follows:
p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
Definitions of K, A, N, C, and E
w x Kwx Awx Nw Cwx Ewx
1 1 1 1 0 1 1
1 0 0 1 0 0 0
0 1 0 1 1 1 0
0 0 0 0 1 1 1
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.

You must determine whether or not a WFF is a tautology.

Input

Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.

Output

For each test case, output a line containing tautology or not as appropriate.

Sample Input

ApNp
ApNq
0
Sample Output

tautology
not

输入由p、q、r、s、t、K、A、N、C、E共10个字母组成的逻辑表达式,
其中p、q、r、s、t的值为1(true)或0(false),即逻辑变量;
K、A、N、C、E为逻辑运算符,
K –> and: x && y
A –> or: x || y
N –> not : !x
C –> implies : (!x)||y
E –> equals : x==y
问这个逻辑表达式是否为永真式。
转变成后缀表达式,再按照上面的规则运算看最后的结果就行,5个变量都遍历一次也没多久。

#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <set>
#include <cmath>
#include <map>
#include <algorithm>
#include <stack>
#define INF 0x3f3f3f3f
#define MAXN 100010
#define Mod 10001
using namespace std;
int p,q,r,s,t;
stack<int> sta;
char op[200];
void fun()
{
    int len=strlen(op);
    for(int i=len-1;i>=0;--i)
    {
        if(op[i]=='p')
            sta.push(p);
        else if(op[i]=='q')
            sta.push(q);
        else if(op[i]=='r')
            sta.push(r);
        else if(op[i]=='s')
            sta.push(s);
        else if(op[i]=='t')
            sta.push(t);
        else if(op[i]=='K')
        {
            int t1=sta.top();
            sta.pop();
            int t2=sta.top();
            sta.pop();
            int te=t1&&t2;
            sta.push(te);
        }
        else if(op[i]=='A')
        {
            int t1=sta.top();
            sta.pop();
            int t2=sta.top();
            sta.pop();
            int te=t1||t2;
            sta.push(te);
        }
        else if(op[i]=='N')
        {
            int t1=sta.top();
            sta.pop();
            int te=!t1;
            sta.push(te);
        }
        else if(op[i]=='C')
        {
            int t1=sta.top();
            sta.pop();
            int t2=sta.top();
            sta.pop();
            int te=(!t1)||t2;
            sta.push(te);
        }
        else if(op[i]=='E')
        {
            int t1=sta.top();
            sta.pop();
            int t2=sta.top();
            sta.pop();
            if(t1==t2)
                sta.push(1);
            else
                sta.push(0);
        }
    }
}
bool check()
{
    for(p=0;p<2;++p)
        for(q=0;q<2;++q)
            for(r=0;r<2;++r)
                for(s=0;s<2;++s)
                    for(t=0;t<2;++t)
                    {
                        fun();
                        if(sta.top()==0)
                            return false;
                    }
    return true;
}
int main()
{
    while(gets(op))
    {
        if(op[0]=='0')
            break;
        if(check())
            printf("tautology\n");
        else
            printf("not\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值