论文阅读: Visual Attention Network

Motivation

  • 自注意力机制在2D自然图像领域面临3个挑战:
    1. 视二维图像为一维序列。
    2. 对于高分辨率图像,二次复杂度消耗太大。
    3. 只捕捉空间适应性,忽略通道适应性。

Contribution

  • 设计了 Large Kernel attention(LKA),包含卷积和自注意力机制的优势。并基于LKA设计了VAN的主干。

Method

Large Kernel Attention

  • 注意机制可以看作是一个自适应选择过程,它可以选择判别特征,并根据输入特征自动忽略噪声响应。注意力机制的关键步骤是生成注意力图,表示不同点的重要性。为此,我们应该学习不同点之间的关系。
  • 有两种不同的方法构建不同点间的关联。
    1. self-attention mechanism: 捕捉大范围依赖(long-range dependence).
    2. large kernel convolution: 使用大核卷积构建关联性并产生注意力图。

在这里插入图片描述

  • (参考上图)为了克服两种方法的不足并充分利用自注意力和大核卷积,我们提出解构大核卷积。把大核卷积分成三部分:一个空间局部卷积 Depth-wise convolution, 一个空间大范围卷积 Depth-wise dilation convolution 和一个通道卷积1x1 convolution。
  • 具体的,我们可以吧KxK的大核卷积解构成 K d × K d \frac{K}{d} \times \frac{K}{d} dK×dK 步长为d的空洞卷积,一个 ( 2 d − 1 ) × ( 2 d − 1 ) (2d-1) \times (2d-1) (2d1)×(2d1) 的深度卷积以及一个 1 × 1 1\times1 1×1 卷积。
  • 通过解构可以捕捉大范围的关联并减少计算消耗以及参数量。
    在这里插入图片描述

Visual Attention Network(VAN)

  • VAN采用了简单的垂直结构,用四个阶段减少输出的空间分辨率, H 4 × W 4 , H 8 × W 8 , H 16 × W 16 , H 32 × W 32 \frac{H}{4} \times \frac{W}{4},\frac{H}{8} \times \frac{W}{8},\frac{H}{16} \times \frac{W}{16},\frac{H}{32} \times \frac{W}{32} 4H×4W,8H×8W,16H×16W,32H×32W
    在这里插入图片描述
  • 默认情况下,我们的 LKA 采用 5 × 5 深度卷积、具有扩张 3 的 7×7 深度卷积和 1×1 卷积来近似 21 × 21 卷积。在这种情况下,VAN 可以有效地实现本地信息和远程连接。我们分别使用7 × 7和3 × 3步幅卷积进行4×和2×下采样。
  • 12
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlueagleAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值