三个关键要素
- 从相机配准的过程中得到的稀疏点云开始,使用3D Gaussian表示场景; 3D Gaussian: 是连续体积辐射场能够防止不必要的空空间优化。
- 对 3D Gaussion进行交叉优化和密度控制: 优化各向异性血方差对场景精确表示。
- 使用快速可视感知渲染算法来进行快速的训练和渲染。

Differentiable 3D Gaussian Splitting
- 表示方法和[1][2]有相似性,同时假设每一个点有一个带法线的平面圆。
- 由于SFM得到的点非常稀疏,很难估计法线,因此,我们建模我们的几何结构为一组不需要法线的3D高斯。定义为一个定义在世界空间的全3D协方差矩阵(3D coveriance matrix) Σ\SigmaΣ,中心在点μ\muμ(mean):
G(x)=e−12(x)TΣ−1(x)G(x) = e^{- \frac{1}{2}(x)^T\Sigma^{-1}(x)}G(x)=e−21(x)<
3DGaussian表示与自适应优化在场景重建中的应用

文章介绍了使用3DGaussian表示稀疏点云进行场景重建的方法,通过优化协方差矩阵和颜色SH系数,结合快速可视感知渲染。文章重点讨论了如何通过自适应密度控制和优化策略来提高3D高斯模型的精度和效率。
最低0.47元/天 解锁文章
5127

被折叠的 条评论
为什么被折叠?



