RC复位电路的原理及其复位时间的计算

本文详细介绍了低电平有效和高电平有效的复位电路,包括电容充电过程和计算所需复位时间的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

低电平有效复位电路如下 


此复位电路是针对低电平有效复位而言的,其中二极管是起着在断电的情况下能够很快的将电容两端的电压释放掉,为下次上电复位准备。

假设电容两端的初始电压为U0(一般情况下设为0V),T时刻电容两端电压为UT。3.3V电压设为VCC。

由流经电容的电流I和电容两端的电压变化关系式:I=C*dUt/dt

可以得到:I*dt=C*dU t

两边分别积分可以的得到:I*T=∫(0-1)C*dUt;即I*T=C*Ut−C*U0(其中U0=0V),

由VCC=UR+UT 可以得到公式:VCC=R1*(C*UT/T)+UT

假设对电容充电至0.9*VCC时完成复位,此时可以得出T=9*RC,T就是所需要的复位时间。

一般芯片的复位时间是给出的,R,C其中可以自己确定一个值,然后再求出另外一个值。


 
 
 
  


在看看高电平有效复位时的RC电路的复位时间的计算过程:其对应的原理图如下: 



假设电容两端的初始电压为U0(一般情况下设为0V),T时刻电容两端电压为UT。

电容的充电电流为:

同理可以得到在T时刻的流经电阻的电流值为I=C1*VCC/T 电阻两端的电压可定:UR=R1*(C1*UT/T)

所以又:VCC=UR+UC1


在T时刻时电容充电为UT ,若UR≥0.9VCC时,高电平复位有效,则可以有UT=0.1VCC,

故可有:0.9VCC=R1*(C1*0.1*VCC/T),故可以得到:T=(1/9)*R1*C1。

其中T就是所需的复位时间,原理图中的电阻电容确定一个值,便可以求出另一个值了




### 低电平复位电路设计中的电容值选择与计算 在单片机的低电平复位电路设计中,电容器的选择至关重要。为了确保可靠的复位操作,需考虑多个因素。 #### 复位脉冲宽度的要求 对于大多数微控制器而言,复位信号需要保持一定的时间长度才能被识别为有效的复位指令。这个最小持续时间为 t_RST_MIN, 它由具体的MCU型号决定[^1]。 #### RC 时间常数 RC时间常数τ=R×C决定了充电/放电过程的速度,在此情况下特别关注的是当电源关闭时通过电阻R向接地路径释放存储于电容C内的能量所需花费的时间。理想状态下希望该时间段大于t_RST_MIN以确保足够的低电平维持期间用于触发复位动作。 因此可以得出如下关系式: \[ \tau = R \times C > t_{\text{RST\_MIN}} \] 其中 \( t_{\text{RST\_MIN}} \) 是制造商规定的最短有效复位周期;\( R \) 表示串联在外围设备供电线路上的小阻值固定电阻器;而 \( C \) 则是我们正在寻找的最佳匹配电容量。 #### 泄流二极管的影响 考虑到实际应用环境可能存在噪声干扰等问题,通常还会加入一个反向偏置的泄流二极管D,它能够在Vcc突然下降的情况下迅速拉低RESET端口电压至安全范围之内,防止误触发电路重启现象的发生。 ```python def calculate_capacitance(min_reset_time, resistance): """ 计算满足最低复位时间要求所需的最小电容值 参数: min_reset_time (float): 单位秒(s),指定的最小复位时间. resistance (float): 单位欧姆(Ω), 已知外部连接的定值电阻大小. 返回: float: 所需的最小电容值(单位法拉F) """ capacitance = min_reset_time / resistance return capacitance ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值