想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。
这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。
酷~~~
首先,我们会用到Ollama,功能是运行大模型。
Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。
目前Ollama支持的大语言模型有:Llama 3、Phi 3、Mistral、Gemma、Neural Chat、Starling、LLaVA、Solar等,当然也包括我们今天演示的Qwen2.5开源大模型。
其次,是Qwen2.5(通义千问)开源大模型。
Qwen(通义千问)是阿里巴巴旗下的大语言模型,具有70亿参数规模,基于Transformer研发。
最后,是AnythingLLM,大模型增强应用,用来做界面化的交互,同时也可以处理文本标记,以及向量数据存储,这样我们就可以给自己部署的大模型投喂数据了。
OK,正式开始!
首先,我们来下载Ollama,官网是:https://ollama.com/
按照页面现实,点击“Download”按钮,进入下载页面。
Ollama支持macOS、Linux和我们常用的Windows操作系统,按照自己电脑安装的操作系统进行选择就可以了。
我用的是Windows 11。
文件并不大,只有700多M,安装软件下载到本地后,直接双击进行安装!
安装软件不复杂,相信各位都能顺利完成。
安装成功后,系统会自动进入命令提示符界面。
现在我们下载AnythingLLM,官网地址是:https://anythingllm.com/
同样的,我们根据自己电脑操作系统,选择对应的安装程序进行下载。
不到300M的安装程序,很快就可以下载下来了。
安装过程和常规软件安装差不多,按照提示进行安装即可。
接下来,咱需要安装一个大模型,今天演示安装通义千问(Qwen)大模型。
在Ollama官网,搜索“Qwen”,如下图所示。
我们选择“qwen2.5”。
在出现的页面中,我们选择复制这段命令,或者直接在命令提示那里输入也可以。
回车后,命令开始执行。
系统会自动开始下载Qwen2.5大模型,文件有点大,4.7G,所以,需要耐心等待一下。
安装成功了,如下图:
这时,我们就可以向大模型提问了,比如:
好了,现在我们还差一个友好的交互界面。
我们打开AnythingLLM,来设置界面化的操作模式。
首先我们先对它进行相关配置的设置。点击左下角的设置按钮。
LLM首选项要选“Ollama”,模型选:Qwen2.5:latest,其它选项可以设置为默认值就可以了。
向量数据库设置,根据实际情况选择即可,这里我们选择了默认的LanceDB。
接下来,嵌入首选项设置,嵌入引擎提供商我们选择Ollama,Ollama Embedding Model我选择的是:nomic-embed-text。
nomic-embed-text是需要提前安装的,安装方法也很简单,在Ollama官网搜索nomic-embed-text,然后复制执行代码,在命令提示符状态下进行执行即可。
复制代码,并执行,系统会进行自动下载并安装。
如果我们要给大模型投喂数据,那么投喂的数据都需要先进行向量化处理,而nomic就是对文本进行向量化处理的工具。
返回上一步的操作界面,我们来创建一个工作区,任意命名这个工作区即可。
我们对这个工作区做一个简单的设置,选择“聊天设置”,同理,要设置成Ollama和Qwen2.5。
接下来设置“代理设置”,一样的配方,一样的味道。
都设置完成后,也象征着我们顺利完成了本地大模型部署,现在可以和它进行对话了哦。
激动的心,颤抖的手,可以在对话框里开始提问了哦~~~
OK,搞定,手工~
且慢,如果我们想投喂数据该怎么操作?
我们只需点击“设置”按钮旁边的这个按钮,即可进入投喂数据操作界面。
投喂操作界面如下:
点击上传文件就可以了。
上传文件后,系统会进行向量化处理,处理后保存,那么下次提问,就可以检索出我们投喂的数据了。
比如,我随便编排了一段文字,然后投喂进去。
这个“锻炼项目”是我瞎编的。
接下来我们再向它提问,它的回答就已经有了我们投喂的数据。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓