Effective Approaches to Attention-based Neural Machine Translation_2015_Luong 【NMT】【Attention】

本文详细探讨了Luong等人在2015年提出的两种注意力机制——全局注意力和局部注意力,用于神经机器翻译。全局注意力允许模型关注源句的所有部分,而局部注意力则更聚焦于源句的特定区域,降低了计算成本并保持可微性。实验表明,局部注意力在英德翻译任务中提高了1.0个BLEU点,全局注意力提升了5.0个点,优于传统技术。此外,输入反馈策略增强了模型的性能,使其能够更好地捕捉先前的对齐状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


论文链接:Effective Approaches to Attention-based Neural Machine Translation
By Luong et al. 2015


任务对齐(alignments between different modalities):对齐是指比如在翻译任务中,翻译每个词的时候,要找多需要重点关注的原句中的词,也就是将原文中的词和目标文中的词对应起来。
对齐权值(alignment weights):在翻译每个词的时候,需要关注那些encoder状态,关注的强度是多少,有一种打分机制,以前一刻的decoder状态和其中一个encoder状态为参数,输出得分 s c o r e ( h t , h ^ s ) score(h_t,\hat{h}_{s}) score(ht,h^s),然后用softmax归一化分值转换为概率,这个概率就是对齐权值。
Soft Attention: 软对齐,就是说encoder中每个词的隐藏层输出 h ^ s \hat{h}_{s} h^s都参与了权重的计算,这种方法方便反向传播。
Hard Attention: 就是会依赖encoder隐藏层的概率 S i S_i Si 选择部分进行计算,而不是整个encoder隐藏层。但是这种不放不可微想要实现梯度的反向传播,需要采用蒙特卡洛采样的方法估计模块的梯度。


提出背景

最新论文提出开始把注意力机制应用于neural machine translation (NMT),将注意力有选择地放在部分source sentence上,本文继续探索更好的将注意力机制应用在NMT。

提出两个模型,一个是Global Attention,将注意力放在全部的source sentence上,另一个是Local Attention,每一个时刻下将注意力放在部分source sentence上。Local Attention是融合了soft attention和hard attention,计算成本更小,而且可微(hard attention不可微),更容易实现和训练。

在对英语和德语互译上的实验中,local attention的BLEU值达到25.9,提高了1.0个点,global attention的BLEU值提升了5.0个点,优于当前使用dropout等技术的效果。

神经机器翻译NMT

nmt是一个神经网络,计算将原句 x 1 , x 2 , . . . x n x_1,x_2,...x_n x1,x2,...xn翻译成目标句 y 1 , y 2 , . . . y m y_1,y_2,...y_m y1,y2,...ym的条件概率: p ( y ∣ x ) p(y|x) p(yx)
nmt的基本形式包括(1)encoder:计算source sentence的表示形式。(2)decoder:一次生成一个目标word,常用RNN结构实现。
已有的结构:

  • CNN-RNN
  • LSTM-LSTM
  • GRU-GRU

模型

提出globallocal两种模型,模型采用的是基于attentionstakcking LSTM architacture

模型的共同点是decoding阶段每一次step t都将LSTM堆顶层作为 h t h_t ht的输入。目标是获得上下文向量 c t c_t ct,这个向量捕获原句中的信息来帮助预测当前的目标单词 y t y_t yt

模型的不同点在于上下文向量 c t c_t ct是如何获取的。

给定目标隐藏层状态 h t h_t ht和上下文向量 c t c_t ct,使用一个连接层将这两个向量的信息结合,生成一个注意力层attentional hidden state:
h ^ t = tanh ⁡ ( W c [ c t ; h t ] ) \hat{h}_{t}=\tanh(W_c[c_t;h_t]) h^t=tanh(Wc[ct;ht])

然后注意力向量作为softmax层的输入生成 y 的预测分布:
p ( y t ∣ y < t , x ) = s o f t m a x ( W s h ^ t ) p(y_t|y_{<t},x)=softmax(W_s\hat{h}_t) p(yty

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值