Datawhale X 李宏毅苹果书AI夏令营 - Task1笔记 - 3.1

1引言

本章探讨了深度学习中的优化问题,特别是如何处理和理解优化过程中的局部极小值与鞍点。理解这些问题对提升神经网络的训练效果至关重要。

1. 局部极小值与鞍点

优化挑战:在深度学习中,训练损失有时不会下降,可能是因为优化陷入了局部极小值或鞍点。

  • 局部极小值:在该点,损失函数的梯度为零,并且在周围的点损失值较高。
  • 鞍点:虽然梯度也为零,但其特性不同于局部极小值或局部极大值。在某些方向上,损失可以更低。

2. 临界点及其分类

判断临界点:通过泰勒级数展开,损失函数在临界点附近可以用梯度和海森矩阵来近似。

  • 海森矩阵:二阶导数构成的矩阵帮助判断临界点的性质。
    • 正定矩阵:若海森矩阵所有特征值均为正,则临界点是局部极小值。
    • 负定矩阵:若海森矩阵所有特征值均为负,则临界点是局部极大值。
    • 混合特征值:若特征值有正有负,则临界点是鞍点。

3. 逃离鞍点的方法

海森矩阵的特征值:通过计算海森矩阵的特征值和特征向量,可以找到负特征值的方向,以更新参数逃离鞍点。

  • 计算复杂性:实际应用中计算海森矩阵的复杂性较高,因此常用更简单的方法来处理鞍点问题。

4. 高维空间中的误差表面

高维效应:高维空间中的误差表面较为复杂,局部极小值在高维空间中往往变成鞍点。

  • 经验观察:实验证明,在高维空间中,鞍点比局部极小值更常见。大多数情况下,遇到的临界点实际上是鞍点而非局部极小值。

总结

深度学习中的优化问题常常涉及到局部极小值和鞍点。通过理解临界点的分类和高维空间的误差表面特性,可以更好地优化神经网络训练过程。虽然理论上海森矩阵提供了有效的分析方法,但实际应用中通常需要更高效的策略来处理这些挑战。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值