跨越时空的难样本挖掘

本文提出XBM方法,通过记忆过去迭代的特征,使模型能跨越mini-batch构建样本对,提高深度度量学习中难例挖掘的效率。研究显示,这种方法能在不显著增加计算资源的情况下,提供大量样本对,有效提升模型性能。
摘要由CSDN通过智能技术生成

Cross-Batch Memory for Embedding Learning

我们码隆科技在深度度量学习继续深耕,又做了一点点改进的工作,承蒙审稿人厚爱,被CVPR-2020接收为Oral,并进入best paper候选(共26篇文章进入了候选)。本文中我们提出了一个叫做XBM 方法,通过记住过去迭代里的特征,使得模型的训练不再仅仅依靠当前 mini-batch 的样本,而是可以跨越“时空”(mini-batch)构建样本对,从而可以用极小的代价来获得巨量的样本对。

那么,如何完成这场跨越时空的牵线?各位看官,请让我为你徐徐道来,讲讲我们和XBM的缘起。正传请见论文:paper link,代码也给各位奉上:code link

背景和动机

难例挖掘是深度度量学习领域中的核心问题,最近很多工作都是在改进采样或者加权方案。目前的改进方法主要有两种思路:

第一种思路是在mini-batch内下功夫,对于mini-batch内的样本对,从各种角度去衡量他们的难度, 然后对于难样本对,给予更高的权重,比如N-pair Loss、Lifted Struture Loss、MS Loss就是这种做法;

第二种思路是在mini-batch的生成做文章,比如HTL、divide and conquer,他们的做法虽然看上去各有不同,甚至复杂精妙,但其实大差不差。不严谨地说,大致思路都是对整个数据集进行聚类,每次生成mini-batch不是从整个数据集去采样,而是从一个子集,或者说一个聚类小簇中去采样。这样的做法,由于采样范围本身更加集中,生成的mini-batch中难例的比例自然也会很高。

然而,无论是第一种方法的额外照顾难样本,还是第二种方法的小范围采样,他们对难例的挖掘能力其实依然有一个天花板:mini-batch的大小。 mini-batch的大小决定了在模型中单次迭代更新中,可以利用的样本对的总量。所以,类比厨师做菜,mini-batch的大小就是食材的数量。巧妇难为无米之炊,即便是中华小当家,没有足够的食材,也做不出来闪闪发光的美味呀。

我们在三个标准图像检索数据库上,对于三种标准的pair-based方法,发现随着mini-batch变大,效果(Recall@1)大幅提升。实验结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值