2016年湖南省第十二届大学生计算机程序设计竞赛

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/bobodem/article/details/52433094

题目: 任意门

听说这套题目是叉姐出的,感觉呵呵了。。。
据说现场牌都不够发的!!!只能说给湖南省出的题目太强了,不适合新手去做,当然我这种老手也不见得做的多好,出了3题,赶在了三等首,但是感觉自己被碾压惨了,尤其看到出题人的解释时。。。

出题人关于题目的解释

Problem A: 2016

题意:

中文题目,给定n,m求a*b%2016==0(1<=a<=n, 1<=b<=m) 的数的对数。

思路:

第一眼看到这破题的时候,首先想到了容斥,不过看了一下榜,2分钟都有人出,貌似有简单的做法,但是这明显是一个数论的题目,有毛毛的简单做法。

容斥原理不怎么确定,也没敢急着敲,索性先打下表,然而,悲催的是并没什么规律,然后继续推,算了,写一发容斥先看看对不对,胡搞一番,已经接近一个小时了,有点捉急,但是写出来连样例都不过,调调改改,一直不对,也没心思看剩下的题,接近两个小时,就有点不想做了,正是困的时候,而且现在还是爆零的状态(一下也没提交),前面有了划分第一个数余数,然后求第二个数的余数的想法,但是在枚举第二个数的时候老是剪不好。

2个小时多一点的时候,试验室中都还在改TLE的代码,我突然想起来,直接2016*2016的算法,直接枚举两个数的余数,无非在不同的剩余系里,这两个数的余数相乘如果是2016的倍数,那么原数一定也是,就这么搞过去了,当然有可优化的余地,当时脑袋都懵了,开了数组。

code:

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

ll v1[2018],v2[2018];

ll n,m,s;
void sol(){
    ll p=n/2016,q=m/2016,pp=n%2016,qq=m%2016;
    for (ll i=0;i<2016;i++) v1[i]=p;
    for (ll i=0;i<2016;i++) v2[i]=q;
    for (ll i=1;i<=pp;i++) v1[i]++;
    for (ll i=1;i<=qq;i++) v2[i]++;
    v1[2016]=v1[0];v2[2016]=v2[0];
    for (ll i=1;i<=2016;i++){
        for (ll j=1;j<=2016;j++){
            if (i*j%2016==0) s+=v1[i]*v2[j];
        }
    }
    cout<<s<<endl;
}
int main()
{
    while (~scanf("%lld%lld",&n,&m)){
        s=0;sol();
    }
}

Problem G: Parenthesis

题意:

给定一个括号串,每次交换两个位置,问交换后是否合法。

思路:

这道是队友看的,也是一开始就过去的,开始我的想法是把(看作是+1,)看作是-1,然后修改也就是维护前缀和,可用线段树或树状数组。不过后来看队友的做法,是贪心的做法,只要是左边的那个是)就一定能成功。然后O(nq)的做法,实际上因为贪心掉一大部分,远远达不到,大概也直到O(n)。

code:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
char s[maxn];
int x[maxn],y[maxn],n,q;

bool solve(int a,int b){
    if(s[a]==s[b])return true;
    if(s[a]==')')return true;
    bool ok=1;
    for(int i=a;i<b;i++)if(x[i]<=y[i]+1)ok=0;
    return ok;
}

int main(){
    while(~scanf("%d%d",&n,&q)){
        scanf("%s",s+1);
        x[0]=y[0]=0;
        for(int i=1;i<=n;i++){
            x[i]=x[i-1];y[i]=y[i-1];
            if(s[i]=='(')x[i]++;
            else y[i]++;
        }
        int a,b;
        while(q--){
            scanf("%d%d",&a,&b);
            if(a>b)swap(a,b);
            if(solve(a,b))puts("Yes");
            else puts("No");
        }
    }
    return 0;
}

Problem J: 三角形和矩形

题意:
中文题目,给定一个三角形和一个矩形,求交的面积。

思路:

几何不怎么搞,但这肯定是套版题目,不过后来听说硬算分情况也可以,因为之前见过HDU 3060求两个多边形并的题目,拿过来直接用了,稍加修改就过了。

code:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
const int maxn = 555;
const int maxisn = 10;
const double eps = 1e-8;
const double pi = acos(-1.0);
int dcmp(double x)
{
    if(x > eps) return 1;
    return x < -eps ? -1 : 0;
}
inline double min(double a, double b)
{return a < b ? a : b;}
inline double max(double a, double b)
{return a > b ? a : b;}
inline double Sqr(double x)
{return x * x;}
struct Point
{
    double x, y;
    Point(){x = y = 0;}
    Point(double a, double b)
    {x = a, y = b;}
    inline Point operator-(const Point &b)const
    {return Point(x - b.x, y - b.y);}
    inline Point operator+(const Point &b)const
    {return Point(x + b.x, y + b.y);}
    inline double dot(const Point &b)const
    {return x * b.x + y * b.y;}
    inline double cross(const Point &b, const Point &c)const
    {return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);}
    inline double len(){return sqrt(dot(*this));}
};
Point LineCross(const Point &a, const Point &b, const Point &c, const Point &d)
{
    double u = a.cross(b, c), v = b.cross(a, d);
    return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
}
double PolygonArea(Point p[], int n)
{
    if(n < 3) return 0.0;
    double s = p[0].y * (p[n - 1].x - p[1].x);
    p[n] = p[0];
    for(int i = 1; i < n; ++ i)
        s += p[i].y * (p[i - 1].x - p[i + 1].x);
    return fabs(s * 0.5);
}
double CPIA(Point a[], Point b[], int na, int nb)
{
    Point p[maxisn], tmp[maxisn];
    int i, j, tn, sflag, eflag;
    a[na] = a[0], b[nb] = b[0];
    memcpy(p, b, sizeof(Point) * (nb + 1));
    for(i = 0; i < na && nb > 2; ++ i)
    {
        sflag = dcmp(a[i].cross(a[i + 1], p[0]));
        for(j = tn = 0; j < nb; ++ j, sflag = eflag)
        {
            if(sflag >= 0) tmp[tn ++] = p[j];
            eflag = dcmp(a[i].cross(a[i + 1], p[j + 1]));
            if((sflag ^ eflag) == -2)
                tmp[tn ++] = LineCross(a[i], a[i + 1], p[j], p[j + 1]);
        }
        memcpy(p, tmp, sizeof(Point) * tn);
        nb = tn, p[nb] = p[0];
    }
    if(nb < 3) return 0.0;
    return PolygonArea(p, nb);
}
double SPIA(Point a[], Point b[], int na, int nb)
{
    int i, j;
    Point t1[4], t2[4];
    double res = 0, if_clock_t1, if_clock_t2;
    a[na] = t1[0] = a[0], b[nb] = t2[0] = b[0];
    for(i = 2; i < na; ++ i)
    {
        t1[1] = a[i - 1], t1[2] = a[i];
        if_clock_t1 = dcmp(t1[0].cross(t1[1], t1[2]));
        if(if_clock_t1 < 0) std::swap(t1[1], t1[2]);
        for(j = 2; j < nb; ++ j)
        {
            t2[1] = b[j - 1], t2[2] = b[j];
            if_clock_t2 = dcmp(t2[0].cross(t2[1], t2[2]));
            if(if_clock_t2 < 0) std::swap(t2[1], t2[2]);
            res += CPIA(t1, t2, 3, 3) * if_clock_t1 * if_clock_t2;
        }
    }
    return PolygonArea(a, na) + PolygonArea(b, nb) - res;
}

Point p1[8], p2[8];
double x[8],y[8];
double san(){
    double l1=fabs(y[1]-y[2]);
    double l2=fabs(x[1]-x[2]);
    return l1*l2*0.5;
}
double si(){
    double hh=fabs(y[4]-y[3]);
    double ww=fabs(x[4]-x[3]);
    return ww*hh;
}
int n1, n2;
int main()
{
    int i;
    while(~scanf("%lf%lf%lf%lf",&x[1],&y[1],&x[2],&y[2]))
    {
        n1=3;n2=4;
        scanf("%lf%lf%lf%lf",&x[3],&y[3],&x[4],&y[4]);
            p1[2].set(x[1],y[1]);
            p1[1].set(x[1],y[2]);
            p1[0].set(x[2],y[1]);

            p2[3].set(x[3],y[3]);
            p2[2].set(x[3],y[4]);
            p2[1].set(x[4],y[4]);
            p2[0].set(x[4],y[3]);
        double ss=san()+si();
        printf("%.9f\n", fabs(ss-SPIA(p1, p2, n1, n2)));
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页