畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 36951 Accepted Submission(s): 13596
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,
每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2-1
解题思路:
最短路问题,用迪杰斯特拉求,需要注意的这里两个顶点之间可能有多条路,只要在输入的时候去重边只保留该两点之间最短的那条边即可;
#include<stdio.h> #define INF 0xffffff int mintu(int x,int y){ if(x>y) return y; return x; } int map[210][210],vis[210],dis[210]; int n,m,s,t; void dijkstra(int s){ int v,u,i; for(i=0;i<n;i++){ dis[i]=INF; vis[i]=0; } dis[s]=0; while(1){ v=-1; for(u=0;u<n;u++) if(!vis[u]&&(v==-1||dis[u]<dis[v])) v=u; if(v==-1) { break; } vis[v]=1; for(u=0;u<n;u++) dis[u]=mintu(dis[u],dis[v]+map[v][u]); } } int main() { int i,j,a,b,c,k; while(scanf("%d%d",&n,&m)!=EOF){ for(i=0;i<n;i++) for(j=0;j<n;j++) map[i][j]=INF; for(i=1;i<=m;i++){ scanf("%d%d%d",&a,&b,&c); if(map[a][b]>c){ //判断是否有重边,若有,取最短的那条; map[a][b]=c; map[b][a]=c; } } scanf("%d%d",&s,&t); if(s==t){ printf("0\n"); continue; } else{ dijkstra(s); if(dis[t]!=INF) printf("%d\n",dis[t]); else printf("-1\n"); } } return 0; }