tensorflow如何实现梯度截断

optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
grads_and_vars = optimizer.compute_gradients(self.loss)
for i, (g, v) in enumerate(grads_and_vars):
	if g is not None:
		grads_and_vars[i] = (tf.clip_by_norm(g, FLAGS.norm_clip), v)
self.train_op = optimizer.apply_gradients(grads_and_vars, global_step=self.global_step)

如上,需要在计算梯度和梯度更新中间添加几行代码。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值