CVPR 2023: 3D Video Loops From Asynchronous Input

本文提出了一种名为MTV的新型表示法,结合传统视频重定向技术和三维扭曲,用于从异步多视图视频中生成3D循环。通过定制的“循环损失”函数,确保平滑的循环过渡,特别关注动态元素的捕获和实时渲染,适用于移动设备。
摘要由CSDN通过智能技术生成

我们使用以下6个分类标准对本文的研究选题进行分析:

1. 场景表示:

这个标准根据研究对所研究场景的表示方式进行分类。每个类别都有不同的优势和局限性:

  • 神经辐射场 (NeRF): 该技术将场景表示为一个连续的体积,其中每个点都有颜色和密度值。它对于复杂场景很强大,但计算成本很高。
  • 体积表示: 类似于 NeRF,它使用 3D 网格来存储体素信息,提供高效的操作,但可能需要大量的内存。
  • 全景/光场视频: 这些同时捕捉场景的多个视图,实现逼真的视图合成,但可能体积庞大且难以捕捉。
  • 其他: 该类别涵盖了各种表示形式,如层叠模型、网格表示和隐式神经表面,每个都适用于特定场景。

2. 场景动态:

这个标准根据场景是否静态或动态对研究进行分类:

  • 静态: 这些研究侧重于没有或最小移动的场景,简化了分析和视图合成技术。
  • 动态: 这些研究处理具有移动对象或随时间变化的场景,需要更复杂的方法来捕捉和表示动态。
  • 部分动态: 这中间类别涵盖了特定元素移动的场景,而背景保持静态&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值