CVPR 2023: BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields

BAD-NeRF 是一种深度学习方法,专注于结合图像去模糊和神经渲染,尤其针对运动模糊的图像。它使用束调整优化相机姿态,显式处理模糊,适用于动态场景,从而提高渲染质量和鲁棒性。
摘要由CSDN通过智能技术生成

我们使用以下6个分类标准对本文的研究选题进行分析:

1. 问题域

  • 神经渲染: 研究集中在从不同视点生成场景的新图像的任务上。目标是逼真的渲染,通常将场景表示为神经网络中的隐式函数。基于 NeRF 的方法主要解决此域。
  • 图像去模糊: 研究专门针对去除图像中的模糊。模糊可能是由相机抖动、物体运动或其他因素引起的。这些技术旨在恢复清晰度和细节。
  • 3D 重建: 研究集中于从一系列图像中构建精确的 3D 模型。这通常涉及像结构从运动 (SfM) 或束调整这样的技术。

2. 方法

  • 神经方法: 研究的核心解决方案基于深度神经网络。这些网络从数据中学习复杂模式来完成渲染、去模糊和 3D 几何估计等任务。
  • 传统计算机视觉: 研究采用经典图像处理、几何算法和优化技术。这包括 SfM、束调整和基于滤波的去模糊等方法。

3. 图像质量关注

  • 高质量输入: 研究的基本假设是提供的图像清晰锐利。许多关于神经渲染的早期作品都属于这一类。
  • 降质输入: 研究明确旨在处理已被降质的图像。该标准解决的最常见降质是运动模糊,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值