我们使用以下6个分类标准对本文的研究选题进行分析:
1. 问题域
- 神经渲染: 研究集中在从不同视点生成场景的新图像的任务上。目标是逼真的渲染,通常将场景表示为神经网络中的隐式函数。基于 NeRF 的方法主要解决此域。
- 图像去模糊: 研究专门针对去除图像中的模糊。模糊可能是由相机抖动、物体运动或其他因素引起的。这些技术旨在恢复清晰度和细节。
- 3D 重建: 研究集中于从一系列图像中构建精确的 3D 模型。这通常涉及像结构从运动 (SfM) 或束调整这样的技术。
2. 方法
- 神经方法: 研究的核心解决方案基于深度神经网络。这些网络从数据中学习复杂模式来完成渲染、去模糊和 3D 几何估计等任务。
- 传统计算机视觉: 研究采用经典图像处理、几何算法和优化技术。这包括 SfM、束调整和基于滤波的去模糊等方法。
3. 图像质量关注
- 高质量输入: 研究的基本假设是提供的图像清晰锐利。许多关于神经渲染的早期作品都属于这一类。
- 降质输入: 研究明确旨在处理已被降质的图像。该标准解决的最常见降质是运动模糊,