Provable Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and Mo

该论文深入探讨了机器学习模型的等变性和鲁棒性的交叉点,特别是在图、点云和分子等数据类型上的应用。它提出了一种新的对抗鲁棒性定义,考虑了群等变性,并开发了可证明鲁棒性的理论框架及方法。研究涵盖了离散和连续变换的等变性,并提供了针对不同模型架构的认证(可证明)鲁棒性保证。
摘要由CSDN通过智能技术生成

我们采用以下六个标准,旨在对机器学习领域的研究论文进行分类,特别是那些涉及模型鲁棒性和等变性的研究。以下是每个标准的详细解释:

  1. 重点: 该标准区分了探索等变性和鲁棒性交叉点的研究、仅关注其中一个属性的研究,或两者都不关注的研究。

    • 等变性和鲁棒性: 这是最具体的类别,包括明确研究如何使机器学习模型既具有等变性(即,它们的预测在特定输入变换下可预测地变化)又具有鲁棒性(即,抵抗对抗性攻击或噪声)的研究。上传的论文完全属于这一类。
    • 仅等变性: 这个更广泛的类别包括开发或增强具有等变性属性的模型,但不具体解决其对对抗性攻击的鲁棒性的研究。
    • 仅鲁棒性: 此类别包括专注于使模型更鲁棒而不显式考虑等变性属性的研究。
  2. 等变性类型: 该标准区分模型预测应保持一致的变换类型。

    • 离散: 这是指属于离散群(例如元素的重新排序或反射)的变换下的等方差。
    • 连续: 这是指属于连续群(例如旋转或平移)的变换下的等方差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值