快照:数据快照(数据兜底方式)

目录

数据快照

存储快照

快照的实现方式


数据快照

数据快照,是对电商业务数据进行的一个不可修改的快速数据拷贝存储。可以方便查看下单那一刻商品的价格等属性,不会因为价格体系变动而发生改变。防止商品卖完、下架等数据不完整问题,进行数据兜底。

例子:百度搜索快照

搜索引擎快照

搜索引擎快照,是指在访客在无法打开某个搜索结果,或者打开速度特别慢的情况下,为访客提供的之前保存在搜索引擎服务器上对应网页内容的纯文本。不过,搜索引擎保存的快照内容一般只包括文本数据,图片及其他多媒体等非文本数据不会被保存。因此,在来源网站无法访问的情况下,图片及其他多媒体在快照中将无法显示。

存储快照

全球网络存储工业协会SNIA(StorageNetworking Industry Association)对快照(Snapshot)的定义是:关于指定数据集合的一个完全可用拷贝,该拷贝包括相应数据在某个时间点(拷贝开始的时间点)的映像。快照可以是其所表示的数据的一个副本,也可以是数据的一个复制品。

快照的作用主要是能够进行在线数据备份与恢复。当存储设备发生应用故障或者文件损坏时可以进行快速的数据恢复,将数据恢复某个可用的时间点的状态。快照的另一个作用是为存储用户提供了另外一个数据访问通道,当原数据进行在线应用处理时,用户可以访问快照数据,还可以利用快照进行测试等工作。所有存储系统,不论高中低端,只要应用于在线系统,那么快照就成为一个不可或缺的功能。 

快照的实现方式

当前实现快照有主要有两种技术,一种是第一次写时复制(Copy OnFirst Write,COFW),有时简称为写时复制(CopyOn Write,COW)。即在数据第一次写入到某个存储位置时,首先将原有的内容读取出来,写到另一位置处(为快照保留的存储空间,此文中我们称为快照空间),然后再将数据写入到存储设备中。而下次针对这一位置的写操作将不再执行写时复制操作。这种技术常在计算机相关的技术中经常初使用,其基本原理大同小异,只是面向的对象不同,适用的场合不一样。从COW 的执行过程我们可以知道,这种实现方式在第一次写入某个存储位置时需要完成一个读操作(读原位置的数据),两个写操作(写原位置与写快照空间),如果写入频繁,那么这种方式将非常消耗IO时间。因此可推断,如果预计某个卷上的I/O多数以读操作为主,写操作较少,这种方式的快照实现技术是一个较理想的选择,因为快照的完成需要较少的时间。除此之外,如果一个应用易出现写入热点,即只针对某个有限范围内的数据进行写操作,那么COW的快照实现方式也是较理想的选择。因为其数据更改都局限在一个范围内,对同一份数据的多次写操作只会出现一次写时复制操作。

<think>好的,我现在需要解决用户提出的问题:在使用Elasticsearch的scroll分页时返回的数据不完整。首先,我得回忆一下scroll分页的基本原理和常见问题。 用户提到数据不完整,可能的原因有几个。首先,scroll的存活时间(keep_alive)设置是否合理。如果scroll的上下文在下次请求前过期,可能导致数据丢失。比如,如果keep_alive设为1分钟,但处理时间超过这个时间,那么后续请求就会失败。所以需要检查keep_alive参数是否足够长,或者是否能够在处理过程中及时续期。 其次,分页大小(size参数)可能设置得过大。虽然Elasticsearch允许较大的size,但过大的值可能导致单个分片处理的数据量超出限制,从而返回部分数据。需要确认size是否在合理范围内,比如不超过10000,或者根据集群配置调整。 另外,索引的变更也可能影响scroll的结果。scroll快照是在初始请求时创建的,如果在滚动过程中有数据写入、更新或删除,这些变更不会反映在后续的结果中。但用户的问题是不全,可能更可能是数据在scroll期间被删除,导致某些文档缺失。需要确认在scroll期间是否有数据变动,并考虑是否需要使用对实时性要求更高的分页方式,比如search_after。 还可能存在网络或客户端处理的问题。比如,客户端在处理分页时没有正确获取所有批次,或者在解析响应时出错。需要检查客户端代码是否正确循环获取所有scroll_id,直到没有更多结果为止。 接下来,我需要参考用户提供的引用内容。引用[4]提到修改max_result_window可以调整返回结果的最大数量,但scroll本身不受这个参数限制,所以可能不相关。引用[2]说明深度分页的性能问题,但scroll设计用于深度分页,应该能处理大量数据,但需要正确使用。 解决方案可能包括:调整keep_alive时间,确保在数据处理期间scroll上下文有效;检查分页大小是否符合集群配置;确保在scroll期间索引没有频繁变化;验证客户端是否正确处理所有批次的数据。 最后,需要验证这些解决方案,比如延长keep_alive,减少size,或者在scroll期间避免数据修改,同时检查客户端代码是否正确处理scroll流程。</think>### 解决Elasticsearch Scroll分页数据不完整的方案 #### 1. 确认Scroll上下文存活时间(keep_alive) Scroll分页通过创建快照上下文实现深度分页,但上下文存活时间需合理设置。若存活时间过短,可能导致后续请求时上下文已过期,从而丢失数据。建议: - 在初始化scroll时设置足够长的`keep_alive`,例如`1m`(1分钟),并根据数据处理耗时动态调整。 - 每次获取下一页时,可通过`scroll_id`续期上下文,保持活跃状态[^3]。 #### 2. 检查分页大小(size)限制 单个scroll请求的`size`参数需合理配置: - 避免单次请求数据量过大,超过分片处理能力。建议分页大小不超过1000。 - 若需获取全部数据,需循环调用scroll接口直到返回`hits.hits`为空[^2]。 #### 3. 处理索引动态变更的影响 Scroll快照基于初始请求时的索引状态,若分页过程中有数据写入或删除,可能导致部分数据未包含在结果中: - 若业务允许,尽量在scroll期间暂停数据变更操作。 - 若需实时性,改用`search_after`分页,结合时间戳或唯一排序字段[^1]。 #### 4. 验证客户端处理逻辑 确保客户端正确处理所有scroll批次: - 示例代码(Python): ```python from elasticsearch import Elasticsearch es = Elasticsearch() scroll_id = None data = [] # 初始化scroll response = es.search( index="your_index", body={"query": {"match_all": {}}}, scroll="2m", size=100 ) scroll_id = response['_scroll_id'] data.extend(response['hits']['hits']) # 循环获取所有数据 while len(response['hits']['hits']) > 0: response = es.scroll(scroll_id=scroll_id, scroll="2m") scroll_id = response['_scroll_id'] data.extend(response['hits']['hits']) ``` #### 5. 调整集群配置(极端情况) 若数据量极大(如超过默认内存限制),可调整集群配置: - 修改`elasticsearch.yml`中的`max_result_window`(但scroll不受此参数限制,此处为兜底方案)[^4]。 - 增加节点内存或优化索引分片策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值