M1部署Ollama
Ollama中文网站: Featured - 精选 - Ollama中文网
下载网址: Download Ollama on macOS
安装后运行llma3模型:
ollama run llama3:8b
界面使用:
GitHub - open-webui/open-webui: User-friendly WebUI for LLMs (Formerly Ollama WebUI)
部署open-webui:
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
访问http://localhost:3000/端口即可访问本地的大模型
下载开源模型支持中文和function calling
下载
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat-GGUF-8bit
官网下载的模型虽然能理解中文, 但是对中文的支持还是比较弱. 需要在hugging face下载中文训练后的模型: Llama3-8B-Chinese-Chat-v2.1
该模型还支持了官方llama3:8b不支持的function calling 调用
ollama下使用自己下载的模型
# 与模型文件相同路径下编辑文件
vim config.txt
输入内容:
FROM "/Users/louye/Downloads/tmp/Llama3-8B-Chinese-Chat-q8_0-v2_1.gguf"
TEMPLATE """{{- if .System }}
<|im_start|>system {{ .System }}<|im_end|>
{{- end }}
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""
SYSTEM """"""
PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>
# 保存文件并退出
wq!
使用命令导入模型:
ollama create llama3-cn -f ./config.txt
查看模型是否存在
ollama list
最后open-webui界面就能看到, 测试一下中文: