本地部署AI大模型 —— Ollama文档中文翻译

写在前面

来自Ollama GitHub项目的README.md 文档。文档中涉及的其它文档未翻译,但是对于本地部署大模型而言足够了。


Ollama

开始使用大模型。

macOS

Download

Windows 预览版

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

手动安装说明

Docker

官方 Ollama Docker 镜像 ollama/ollama 已在 Docker Hub 上可用.

库资源

快速启动

使用 Llama 3 本地大模型:

ollama run llama3

模型库

查询 Ollama 支持的可用大模型列表 ollama.com/library

这里是一些可以下载的大模型的例子:

模型 参数 大小 下载
Llama 3 8B 4.7GB ollama run llama3
Llama 3 70B 40GB ollama run llama3:70b
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Phi 3 Medium 14B 7.9GB ollama run phi3:medium
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

Note: 你需要至少8GB RAM 来运行7B 参数的模型, 16GB 来运行 13B 大模型, 32GB 来运行33B.

自定义模型

从 GGUF 引入

Ollama支持在Modelfile中导入GGUF模型:

  1. 创建一个名为 Modelfile 的文件, 使用带有要导入的模型的本地文件路径的“FROM”指令。

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. 在 Ollama 里创建模型

    ollama create example -f Modelfile
    
  3. 运行模型

    ollama run example
    

从 PyTorch 或 Safetensors 引入

检查 引导 来获得关于引入模型的更多信息. (中文版不可用)

自定义 prompt

从Ollama 库下载的大模型可以用prompt 自定义. 例如, 要自定义 llama3 模型:

ollama pull llama3

创建 Modelfile:

FROM llama3

# 将参数设置为1[越高越有创意,越低越连贯]
PARAMETER temperature 1

# 设置系统信息
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

下一步, 创建并运行模型:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

有关更多示例࿰

Ollama是一个致力于简化大型语言模型(LLM)和生成式AI应用开发、部署流程的平台。对于想要在本地环境中部署文本生成图像(文生图)模型的需求,通常涉及到以下几个步骤: ### 环境准备 首先需要准备好适合运行深度学习任务的工作环境。这包括但不限于安装必要的依赖库如Python及其相关的包管理工具pip;配置好GPU驱动程序以便加速计算过程(如果硬件支持的话)。另外还需要考虑是否有足够的磁盘空间存储预训练好的大尺寸模型文件以及充足的内存资源。 ### 模型选择与获取 确定你要使用的具体文生图算法或框架,例如DALL-E Mini等流行方案,并从官方渠道下载对应的权重文件或者直接利用已有的API服务端点。部分开源项目可以直接克隆其仓库到本地服务器上进行下一步操作前的所有准备工作。 ### 配置启动 按照所选项目的文档说明完成环境变量设定、参数调整等工作,确保所有组件都能正常通信工作。比如设置数据库连接字符串让应用程序能够读取用户输入并保存结果;指定静态资源路径方便前端页面加载显示生成的内容等等。 ### 测试验证 最后一步就是全面地测试整个系统是否按预期运作了——通过编写简单的脚本向接口发送请求查看返回值是否正确无误;检查日志输出寻找潜在错误提示信息进一步优化性能表现直到满意为止。 请注意实际操作过程中还需结合自身业务场景做出适当修改定制化处理,以上只是一个通用指导建议仅供参考。 --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值