循环平稳分析是一种非常适用于周期性信号的处理方法。这种分析方法对这类信号进行分析时不依赖时间维度上的累积,在完成信号检测、参数估计等处理时只需单个记录。目前,循环平稳分析方法已在信号与信息处理的各个领域中广泛使用,包括微弱信号检测、信号调制识别、参数估计、信道识别等。
循环谱相对于传统的功率谱在雷达辐射源个体特征提取与识别方面,具有以下优点:
(1)不同类型的脉内有意或无意调制信号中,通过对功率谱密度函数的分析可能从中无法提取到太多的特性和差异,但通过分析循环谱密度函数却可以发现信号的无意调制表现的较为明显。因此,对于信号的分类和识别工作,循环谱密度函数具有更加明显的优势;
(2)因平稳的噪声和干扰在处不呈现谱相关性,可推论得出
处的循环谱密度函数
。因此,利用循环谱进行特征提取,可以在抑制平稳的噪声和干扰时收获更优的效果,在提取的个体特征稳定性方面有一定提升;
(3)循环谱在谱频率和循环频率的双频率平面内对功率谱进行定义,超越了原本在一维的频率轴上进行的定义。通过在循环谱上分析信号,可发现其中包含了多重我们所关注的频率和相位信息,这些信息与调制信号参数相关,具有提取称为个体特征的潜质。通过分析它所包含的幅度和相位信息,可得到如寄生信号的频率、周期性杂散、相位、幅度等维度的特征参量。通过扩展至双频率平面后可以发现,在对非平稳信号的分析和特征提取方面,循环谱对非平稳信号有更强的能力和效率;
(4)通过分析循环谱上的信号特征分布规律可以得知,功率谱的连续性不会影响信号特征周期性地离散分布在循环谱上这一特质。因而可以借助循环谱的优势,对功率谱上难以处理的具有重叠特性的信号进行分辨。因此,当多个信号叠加在一起时,可通过在循环谱上区分信号的不同的循环频率,从而逐个将感兴趣的信号从中剥离出来,即提高了分辨出不同信号的能力。
通过上述分析可以看出,通过扩展出循环谱这一维度,解决了某类信号在功率谱等维度上难以处理的问题,信号分析的手段和视角得到了有力扩充。特别是一些在常规域中难以获得有益分析结果的复杂信号,通过在循环谱域的映射,可作为分辨依据更加轻松便捷地获取更全面细微的个体特征。虽然我们可以在谱频率-循环频率的定义域内获得更丰富的信息,但实质上整个二维平面包含的信息量过大,不利于特征的表示,且其中的大量信息其实无法用于特征提取,是冗余的信息,远超出了我们的应用范畴,在提取分类特征时还需进行进一步的处理。
对于一个简单正弦信号:
循环谱可表达为
从上式可以看出,当时,
与传统功率谱类似;而当
时,循环谱
中还包含了与调制信号参数相关的频率、相位信息。
基于目前的发射机体制和制造技术,总会有不需要的杂散频率和相位噪声伴附着发射机发射出的有用信号。在区分雷达辐射源的个体特征时,这些杂散频率成份经过适当的提取和整理是可能作为判决依据的。
发射机工作时因器件性能等原因而导致信号中存在的寄生调制等是杂散的主要类型。另一种类是相位噪声;通过对相位噪声的分析,可以得到雷达内部电路中各器件的性能参数和特性。
由上式可以看出,在循环谱平面的切片具有重要的特质,通过对该切片的分析不仅可提取信号中所携带的常规信息,还能提取出信号中更加细微的特征用于辐射源个体识别。同时可以得出,循环谱域因其扩展出的新维度可以分析更多层次的参数特征,因而具有较高的循环频率分辨率,在提取信号无意调制特性的能力上有更好的表现。在提取特征向量时,取循环谱变换平面的零频切片。同时,还可利用PCA等方法,进行特征降维,从而实现对冗余特征的去除,运算量的降低也可刻大幅提高分类器的速度。
图1 基于循环谱的特征提取算法框图