target和source之间的转换(目标对象和源对象之间的转换)

public class Transfer<Source, Target> {


// 定义两个Class对象
private Class sourceClazz;
private Class targetClazz;


public Transfer() {
Type[] c = ((ParameterizedType) getClass().getGenericSuperclass()).getActualTypeArguments();
sourceClazz = (Class) c[0];
targetClazz = (Class) c[1];
}


// 源文件和目标文件之间的转换
protected void convertExt(Source source, Target target) {
}


protected void reverseConvertExt(Target target, Source source) {
};
// 将目标文件List集合转为源文件list集合


public List<Source> reverseConvert(List<Target> targetList) {
// 首先判断目标list集合是否为空,如果为空则返回null
if (CollectionUtils.isEmpty(targetList)) {
return null;
}
// 创建源文件list集合
List<Source> sourceList = new ArrayList<>(targetList.size());
for (Target target : targetList) {
Source source = null;
try {
source = (Source) sourceClazz.newInstance();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
BeanUtils.copyProperties(target, source);
reverseConvertExt(target, source);
sourceList.add(source);
}
return sourceList;
}


// 将源文件List集合转为目标文件list集合
public List<Target> convert(List<Source> sourceList) {
// 判断源文件是否为空
if (CollectionUtils.isEmpty(sourceList)) {
return null;
}
List<Target> targetList = new ArrayList<>(sourceList.size());
for (Source source : sourceList) {
Target target = null;
try {
target = (Target) targetClazz.newInstance();
} catch (InstantiationException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IllegalAccessException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
BeanUtils.copyProperties(source, target);
convertExt(source, target);
targetList.add(target);
}
return targetList;
}


// 将源文件转为目标文件
public Target convert(Source source) {
// 判断源文件是否为空
if (source == null) {
return null;
}
Target target = null;
try {
target = (Target) targetClazz.newInstance();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
BeanUtils.copyProperties(source, target);
convertExt(source, target);
return target;
}


// 将目标文件反转为源文件
public Source reverseConvert(Target target) {
if (target == null) {
return null;
}
Source source = null;
try {
source = (Source) sourceClazz.newInstance();
} catch (InstantiationException e) {
e.printStackTrace();
} catch (IllegalAccessException e) {
e.printStackTrace();
}
BeanUtils.copyProperties(target, source);
reverseConvertExt(target, source);
return source;
}


}
以下是一个示例代码,用于基于DCNN的滚动轴承迁移诊断,同时减少域分类损失和源域与目标域的MMD损失。 首先,您需要安装必要的Python库,如TensorFlow和Scikit-learn。您可以使用以下命令安装它们: ``` pip install tensorflow pip install scikit-learn ``` 接下来,您需要准备域和目标域数据,并将它们转换为TensorFlow支持的格式。假设您的数据集包括N个域样本和M个目标域样本,每个样本包括一个图像和一个标签。您可以使用以下代码加载和转换数据: ```python import tensorflow as tf from sklearn.model_selection import train_test_split import numpy as np # Load source domain data source_images = np.load('source_images.npy') source_labels = np.load('source_labels.npy') # Load target domain data target_images = np.load('target_images.npy') # Convert data to TensorFlow format source_images = tf.data.Dataset.from_tensor_slices(source_images) source_labels = tf.data.Dataset.from_tensor_slices(source_labels) target_images = tf.data.Dataset.from_tensor_slices(target_images) # Split source domain data into train and validation sets source_train_images, source_val_images, source_train_labels, source_val_labels = train_test_split( source_images, source_labels, test_size=0.2, random_state=42) # Preprocess data def preprocess(image, label): image = tf.image.convert_image_dtype(image, tf.float32) image = tf.image.resize(image, (224, 224)) image = tf.keras.applications.resnet50.preprocess_input(image) label = tf.one_hot(label, depth=5) return image, label source_train_data = tf.data.Dataset.zip((source_train_images, source_train_labels)) source_val_data = tf.data.Dataset.zip((source_val_images, source_val_labels)) source_train_data = source_train_data.shuffle(10000).map(preprocess).batch(32) source_val_data = source_val_data.map(preprocess).batch(32) target_data = target_images.map(preprocess).batch(32) ``` 接下来,您需要创建一个DCNN模型,并定义域分类损失和源域与目标域的MMD损失。您可以使用以下代码创建一个ResNet50模型,并定义损失函数: ```python from tensorflow.keras import layers, models, losses # Create ResNet50 model base_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) # Add classification head x = layers.GlobalAveragePooling2D()(base_model.output) x = layers.Dense(512, activation='relu')(x) x = layers.Dropout(0.5)(x) predictions = layers.Dense(5, activation='softmax')(x) model = models.Model(inputs=base_model.input, outputs=predictions) # Define source domain classification loss source_loss_fn = losses.CategoricalCrossentropy(from_logits=True) # Define MMD loss def mmd_loss(source_features, target_features): gamma = 1.0 / (source_features.shape[-1] ** 2) source_kernel = tf.exp(-gamma * tf.square(tf.linalg.norm(source_features[:, None, :] - source_features[None, :, :], axis=2))) target_kernel = tf.exp(-gamma * tf.square(tf.linalg.norm(target_features[:, None, :] - target_features[None, :, :], axis=2))) cross_kernel = tf.exp(-gamma * tf.square(tf.linalg.norm(source_features[:, None, :] - target_features[None, :, :], axis=2))) loss = tf.reduce_mean(source_kernel) + tf.reduce_mean(target_kernel) - 2 * tf.reduce_mean(cross_kernel) return loss ``` 接下来,您可以使用域数据训练模型,并在每个epoch结束时计算域分类损失和源域与目标域的MMD损失。您可以使用以下代码训练模型: ```python # Define optimizer optimizer = tf.keras.optimizers.Adam(lr=0.001) # Define metrics train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') val_loss = tf.keras.metrics.Mean(name='val_loss') val_accuracy = tf.keras.metrics.CategoricalAccuracy(name='val_accuracy') # Train model for epoch in range(10): # Reset metrics train_loss.reset_states() train_accuracy.reset_states() val_loss.reset_states() val_accuracy.reset_states() # Train on source domain data for images, labels in source_train_data: with tf.GradientTape() as tape: # Compute source domain classification loss source_logits = model(images) source_loss = source_loss_fn(labels, source_logits) # Compute source domain features source_features = base_model(images) # Compute MMD loss target_images_iter = iter(target_data) target_features = base_model(next(target_images_iter)) for target_images_batch in target_images_iter: target_features_batch = base_model(target_images_batch) target_features = tf.concat([target_features, target_features_batch], axis=0) mmd_loss_val = mmd_loss(source_features, target_features) # Compute total loss total_loss = source_loss + 0.1 * mmd_loss_val # Update model parameters gradients = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) # Update metrics train_loss.update_state(total_loss) train_accuracy.update_state(labels, source_logits) # Evaluate on validation set for images, labels in source_val_data: # Compute source domain classification loss source_logits = model(images) source_loss = source_loss_fn(labels, source_logits) # Update metrics val_loss.update_state(source_loss) val_accuracy.update_state(labels, source_logits) # Print metrics print('Epoch {}, Train Loss: {:.4f}, Train Accuracy: {:.2f}%, Val Loss: {:.4f}, Val Accuracy: {:.2f}%'.format( epoch+1, train_loss.result(), train_accuracy.result()*100, val_loss.result(), val_accuracy.result()*100)) ``` 最后,您可以使用训练好的模型对目标域数据进行预测。您可以使用以下代码预测目标域数据: ```python # Predict on target domain data predictions = model.predict(target_data) ``` 需要注意的是,这只是一个示例代码,您需要根据自己的数据集和任务进行适当修改。此外,为了使模型性能更好,您可能需要使用其他技术,例如数据增强、迁移学习和模型微调等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值