分类器之adaboost

本文介绍了Boosting算法的基本概念,特别是Adaptive Boosting (AdaBoost) 的工作原理及其变种算法。AdaBoost通过调整被错误分类样本的权重来提高训练效果,从而实现由弱分类器到强分类器的转变。
摘要由CSDN通过智能技术生成

http://www.cnblogs.com/hrhguanli/p/3932488.html

Boosting简单介绍

分类中通常使用将多个弱分类器组合成强分类器进行分类的方法,统称为集成分类方法(Ensemble Method)。比較简单的如在Boosting之前出现Bagging的方法,首先从从总体样本集合中抽样採取不同的训练集训练弱分类器,然后使用多个弱分类器进行voting,终于的结果是分类器投票的优胜结果。这样的简单的voting策略通常难以有非常好的效果。直到后来的Boosting方法问世,组合弱分类器的威力才被发挥出来。Boosting意为加强、提升,也就是说将弱分类器提升为强分类器。而我们常听到的AdaBoost是Boosting发展到后来最为代表性的一类。所谓AdaBoost,即Adaptive Boosting,是指弱分类器依据学习的结果反馈Adaptively调整如果的错误率,所以也不须要不论什么的先验知识就能够自主训练。Breiman在他的论文里赞扬AdaBoost是最好的off-the-shelf方法。

两类Discrete AdaBoos算法流程

AdaBoosting方法大致有:Discrete Adaboost, Real AdaBoost, LogitBoost, 和Gentle AdaBoost。全部的方法训练的框架的都是类似的。以Discrete Adaboost为例,其训练流程例如以下:


首先初始化每一个样本同样的权重(步骤2);之后使用加权的样本训练每一个弱分类器 (步骤3.1);分类后得到加权的训练错误率和比例因子 (步骤3.2);将被错误分类的样本的权重加大,并将改动后的权重再次归一化(步骤3.3);循环训练过程,终于使用比例因子 组合组合弱分类器构成终于的强分类器。
以下看一个更形象的图,多个弱分类器的组合过程和结果大致为:



训练的循环过程,加重被错误分类的样本的权重是一种有效的加速训练的方法。因为训练中正确率高的弱分类器权重较大,新一轮的训练中正确分类的样本会越来越多,权重较小的训练样本对在新一轮的训练中起作用较小,也就是,每一轮新的训练都着重训练被错误分类的样本。

实际训练中弱分类器是一样的,但弱分类器实际使用的训练数据不同,通常使用特征向量的每一维分别构成一个弱分类器。而后来大名鼎鼎的Haar+Adaboost人脸检測方法是使用每种Haar特征构成一个弱分类器,基于Block的Haar特征比简单的基于pixel的特征有带有很多其它的信息,通常能得到更好的检測效果,而积分图Integral的方法使其在计算速度上也有非常大优势。有兴趣可參考《基于Adaboost和Haar-like特征人脸识别》。

Real AdaBoost和Gentle AdaBoost

Discrete Adaboost是最简单的两类Boosting分类结果,而兴许的Real AdaBoost(也称为AdaBoost.MH)能够看做Discrete Adaboost的泛化形式,弱分类器能够输出多个分类结果,并输出这几个分类结果的可能性,能够看成每一个弱分类器都更不“武断”。而Gentle AdaBoost则是改动了迭代训练过程中错误样本权重调整的方法,较少地强调难以分类的样本,从而避免了原本AdaBoost对”非典型”的正样本权值调整非常高而导致了分类器的效率下降的情况。,而产生的变种算法。AdaBoost的Matlabe工具箱 GML_AdaBoost_Matlab_Toolbox实现了Real AdaBoost, Gentle AdaBoost和Modest AdaBoost,且有个概况明了的介绍(工具箱的使用内部用手冊,也能够參考下一篇 《CART和GML AdaBoost Matlab Toolbox》):

至于LogitAdaBoost我事实上不太了解,详细可參考《 OpenCV关于AdaBoost的一些说明》。


adaboost 的几种改进

  1. Modest adaboost
  2. real adaboost
  3. gentle adaboost
  4. logita daboost

Modest Adaboost 的伪码


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值