高中数学:平面向量-题型总结及解题思路梳理

一、知识点及解题思路梳理

在这里插入图片描述
高中,2/3的向量题目是坐标向量题,1/3是几何向量题。但是,这1/3的几何向量题可以转换成坐标向量题。

二、练习

例题1

几何型向量题
在这里插入图片描述

例题2

在这里插入图片描述在这里插入图片描述

例题3(较难)

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
这一题,比较奇怪,必须从OC=OB条件出发,代入 A C → \mathop{AC}\limits ^{\rightarrow} AC A B → \mathop{AB}\limits ^{\rightarrow} AB,才能求出结果。

我试着从 A C → \mathop{AC}\limits ^{\rightarrow} AC A B → \mathop{AB}\limits ^{\rightarrow} AB出发,代入OC=OB条件时,无法解答。
在这里插入图片描述在这里插入图片描述
我理解的是,条件都是相等的,从任何一个条件入手,殊途同归才是,还有先后使用顺序吗?
有没有同学解释一下?

咨询了群友,说 A C → \mathop{AC}\limits ^{\rightarrow} AC A B → \mathop{AB}\limits ^{\rightarrow} AB是无效条件,因为,λ = A C → \mathop{AC}\limits ^{\rightarrow} AC/ A B → \mathop{AB}\limits ^{\rightarrow} AB,是个待求问题的方向,不是条件!!!也就是说,这个不是解决问题的入口。
所以,我们在解题时,尽量从确定的有效条件入手。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值