一、知识点及解题思路梳理
高中,2/3的向量题目是坐标向量题,1/3是几何向量题。但是,这1/3的几何向量题可以转换成坐标向量题。
二、练习
例题1
几何型向量题
例题2
例题3(较难)
这一题,比较奇怪,必须从OC=OB条件出发,代入
A
C
→
\mathop{AC}\limits ^{\rightarrow}
AC→=λ
A
B
→
\mathop{AB}\limits ^{\rightarrow}
AB→,才能求出结果。
我试着从
A
C
→
\mathop{AC}\limits ^{\rightarrow}
AC→=λ
A
B
→
\mathop{AB}\limits ^{\rightarrow}
AB→出发,代入OC=OB条件时,无法解答。
我理解的是,条件都是相等的,从任何一个条件入手,殊途同归才是,还有先后使用顺序吗?
有没有同学解释一下?
咨询了群友,说
A
C
→
\mathop{AC}\limits ^{\rightarrow}
AC→=λ
A
B
→
\mathop{AB}\limits ^{\rightarrow}
AB→是无效条件,因为,λ =
A
C
→
\mathop{AC}\limits ^{\rightarrow}
AC→/
A
B
→
\mathop{AB}\limits ^{\rightarrow}
AB→,是个待求问题的方向,不是条件!!!也就是说,这个不是解决问题的入口。
所以,我们在解题时,尽量从确定的有效条件入手。