支持向量机(Support Vector Machine,SVM)是⼀种强⼤的监督学习算法,主要⽤于分类问题,但也可⽤于回归和异常检测。SVM的基本原理是在特征空间中找到⼀个最优的超平⾯,以最大化不同类别之间的间隔,从而使分类更加准确。
1.基本原理
1、间隔最大化:SVM 的⽬标是找到⼀个超平⾯,使不同类别的样本点到这个超平⾯的距离(间隔)最大化。这个间隔被称为“间隔最大化”。
2、支持向量:在SVM中,只有⼀小部分样本点对超平⾯的位置具有影响力,它们被称为“⽀持向量”。这些⽀持向量是距离超平⾯最近的样本点,它们决定了超平⾯的位置。
3、核技巧:SVM还使⽤了核函数,可以将数据从原始特征空间映射到⼀个更⾼维度的特征空间。这使得SVM可以处理非线性可分的数据。
2.公式模型
支持向量机的核心公式是间隔最大化的优化问题。对于线性可分的情况,⽀持向量机的⽬标函数为: