Python从0到100(五十五):机器学习-支持向量机及手写数字进行分类

在这里插入图片描述支持向量机(Support Vector Machine,SVM)是⼀种强⼤的监督学习算法,主要⽤于分类问题,但也可⽤于回归和异常检测。SVM的基本原理是在特征空间中找到⼀个最优的超平⾯,以最大化不同类别之间的间隔,从而使分类更加准确。

1.基本原理

1、间隔最大化:SVM 的⽬标是找到⼀个超平⾯,使不同类别的样本点到这个超平⾯的距离(间隔)最大化。这个间隔被称为“间隔最大化”。
2、支持向量:在SVM中,只有⼀小部分样本点对超平⾯的位置具有影响力,它们被称为“⽀持向量”。这些⽀持向量是距离超平⾯最近的样本点,它们决定了超平⾯的位置。
3、核技巧:SVM还使⽤了核函数,可以将数据从原始特征空间映射到⼀个更⾼维度的特征空间。这使得SVM可以处理非线性可分的数据。

2.公式模型

支持向量机的核心公式是间隔最大化的优化问题。对于线性可分的情况,⽀持向量机的⽬标函数为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是Dream呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值