指称关系(Referring Relationships)

本文提出了指称关系(Referring Relationships)任务,旨在通过输入图像和关系来定位同一类别实体,减少歧义。模型通过迭代传递消息处理循环依赖,使用注意力转移操作来解决对谓词运算符的建模难题。实验展示了模型在CLEVR、VRD和Visual Genome数据集上的效果,证明了其在定位任务中的有效性。
摘要由CSDN通过智能技术生成

Title_RR

指称关系(Referring Relationships)


一、引入

  在日常话语中指称表达有助于识别和定位我们周围的实体。例如,我们可能会很容易将“踢球的人”与“守卫球门的人”区别开来。在该例中,我们通过各实体与其他实体的关系来消除两个人之间的歧义。

  当然,图像也一样,其不仅仅是一组对象,每个图像代表一个相互关联的网络。图像中实体之间的这些关系具有一定的语义,并可帮助观看者区分各实体。

  例如,在足球比赛的图像中(如图1),可能存在多个人,但是每个人都参与不同的关系:一个是踢球,另一个是守卫球门。文中,我们制定了利用这些 “指称关系” 来消除同一类别实体之间歧义的任务。

  最终目标是构建可以识别具体所指的实体的计算模型。我们引入了指称关系 —— 在给定关系的情况下,模型可以根据指称关系确认场景中的某些实体。形式上,任务需要输入图像以及关系,其形式为 < subject-predicate- object >,并输出主题和对象位置。例如,图1中的输入关系为< person-kicking-ball > 和 < person-guarding-goal >。在这里插入图片描述

图1 引用关系通过使用与其他实体的相对关系消除相同类别的实例之间的歧义。

  

二、主要难点及相关工作

  前人工作中主要的难点

  1 对语言建模较为困难(自然语言处理)

  2 难以对小尺寸和辨识度低的组合物进行辨别

  3 对谓词运算符进行建模并不简单

  先简单提一下场景图(scene graph),关系被形式化为图像的显式形式表示的一部分,称为场景图[14,17],如下图。场景图可以改善许多计算机视觉任务,包括语义图像检索[33],图像描述[1]和对象检测[30]。

scene graph example

  

  场景图相关文献主要是在给定输入图像的情况下输出关系。相反,我们关注的是通过输入关系和图像,定位对应的实体。

  对语言建模困难的处理

  以前的工作试图在指称表达式理解[28,24,41,42,11]的背景下消除相同类别的实体的歧义。他们的任务需要一种自然语言输入,例如“守护目标的人”,从而导致需要自然语言和计算机视觉组件的评估。确定这些模型所产生的错误是出自然语言还是可视组件,这可能具有挑战性。

  文中通过结构化关系输入接口,如 < person-kicking-ball > ,这减轻了对语言建模(自然语言处理)的需要。

  难以辨别问题的处理

  在目标定位文献中,斑马和人等一些实体具有高度的辨别力,易于检测,而玻璃和球等其他实体往往难以定位[29]。这些困难是由于例如小尺寸和非辨别性组合物而产生的。这种难度差异转化为指称关系任务。为了应对这一挑战,我们使用直觉,如果我们知道另一个实体在哪里,检测一个实体会变得更容易。

  换句话说,我们可以发现球是以踢球的人为条件的,反之亦然。

  我们通过展开模型并通过谓词定义的操作符,在主语和宾语之间迭代传递消息来训练这种循环依赖关系。

  对谓词运算符建模问题的处理

  另外,对谓词运算符进行建模并不简单,传统上,以前的视觉关系论文已经为每个谓词学习了基于外观(appearance-based)的模型[20,23,26]。不幸的是,根据所涉及的实体,谓词的外观剧烈变化使得学习谓词外观模型具有挑战性。(这里的基于外观,可理解为主语和宾语的搭配)

  例如,谓词携带的外观可以在以下两种关系之间显著变化:< person - carrying - phone >和 < truck - carrying - hay>。

  相反,受到心理学中移动聚光灯理论(the moving spotlight theory)的启发[18,35],通过使用谓词作为从一个实体到另一个实体的视觉注意转移操作来绕过这一挑战。当一个移位操作学习将注意力从主语移动到宾语时,反向谓词移位类似地将注意力从宾语移回到主语。在多次迭代中,我们将主语和宾语之间的这些非对称注意力转移操作作为每个谓词不同类型的消息操作[37,9]。

  进一步说明,我们使用来自心理学的insight(洞察?)[18,35],特别是移动聚光灯理论,这表明视觉注意力(visual attention)可以被建模为以特定目标为条件并针对特定目标的聚光灯。前人的工作已经探索了使用注意力来改善图像字幕[38,2],甚至堆叠以改善问题回答[13,39]。相比之下,我们为每个唯一谓词建模两个判别式注意力移位(attention shifting )操作,一个以主语为条件来定位对象,以及以宾语为条件的逆谓词移位以找到主语,如下图。每个谓词都利用实体的当前估计以及图像特征来学习如何移位,从而允许它利用空间和语义特征。
shift_location

图3 (a) 相对于图像中间的主语,当使用关系< subject-left of-object>查找宾语时,谓词 left 将注意力转移到右边。相反地,当使用宾语查找主语时,逆谓词 left 会将注意力转移到左边。(b)在查看用于学习这些变化的数据集时,这些变化是直观的。例如,我们发现 ride 通常表明主语和宾语属于上下关系。

  

三、指称关系模型及流程

  回想一下,我们的目标是通过定位关系中涉及的实体,使用输入指称关系来消除图像中实体的歧义。 形式上,输入是具有指称关系的图像I,关系R = < S-P-O >,它们分别是主语,谓词和宾语类别。期望该模型定位主语和宾语。

主要模型

  Symmetric stacked attention shifting (SSAS) model

  对称堆叠注意力转移(SSAS)模型

main_model

主要流程:

  1. 预训练得到 image_feature。 给定图像和 relationship,图像经一个pre-trained 的网络提取图像视觉特征(image_feature),特征 feature map 的尺寸是(L, L, C),C为通道数;

  2. 映射稠密C维矩阵。 将 subject 和 object(作者在代码中将 subject 和 object 表示为其类别 id,为一个整数)映射为一个稠密 C 维向量:embedded_subject,embedded_object;

  3. 得到初步的注意力映射图。 image_feature 分别与 embedded_subject、embedded_object,逐位置进行内积,计算初始的 subject attention map 和 object attention map,尺寸均为 (L, L, 1);
    x ^ 0 = Att ⁡ ( μ , S ) = ReLU ⁡ ( μ ⋅ Emb ⁡ ( S ) ) y ^ 0 = Att ⁡ ( μ , O ) = ReLU ⁡ ( μ ⋅ Emb ⁡ ( O ) ) \begin{array}{l}{\hat{\mathbf{x}}^{0}=\operatorname{Att}(\boldsymbol{\mu}, S)=\operatorname{ReLU}(\boldsymbol{\mu} \cdot \operatorname{Emb}(S))} \\ {\hat{\mathbf{y}}^{0}=\operatorname{Att}(\boldsymbol{\mu}, O)=\operatorname{ReLU}(\boldsymbol{\mu} \cdot \operatorname{Emb}(O))}\end{array}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值