防止过拟合丢弃法(Dropout)的代码实现

本文介绍了如何在PyTorch中使用dropout层来防止过拟合,展示了一个包含dropout的神经网络模型,该模型在Fashion-MNIST数据集上进行训练。模型包含多个全连接层,并在训练过程中根据dropout概率动态地丢弃部分节点。
摘要由CSDN通过智能技术生成

代码如下

import torch
from torch import nn
from d2l import torch as d2l

#drop函数, 概率>dropout保留, <dropout丢弃, 输出x/1-p, 使x由概率转成一个数用作下一轮的输入
def dropout_layer(x, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(x)#将x的所有值赋为0
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return x
    #torch.rand(x.shape)代表随机选出一个2行8列的矩阵; 如果矩阵中有元素值>dropout转成赋给mask, <dropout赋对应元素值为0
    mask = (torch.rand(x.shape) > dropout).float()
    return mask * x / (1.0 - dropout)
#生成2行8列torch格式的矩阵
x= torch.arange(16, dtype = torch.float32).reshape((2, 8))
dropout1, dropout2 = 0.2, 0.5
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training = True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)#定义一个网络模型, Linear是全连接层
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)#定义2个net模型
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)#定义3个net模型
        self.relu = nn.ReLU()
    def forward(self, X):#定义前向传播
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))#对网络模型输入, 结果经过relu激活函数转换
        #H1叫第一个隐藏层的输出
        #原来一次训练就是一次全连接层
        # 只有在训练模型时才使用dropout
        if self.training == True:
            # 在第一个全连接层之后添加一个dropout层
            H1 = dropout_layer(H1, dropout1)#对第一层的输出经过dropout函数转成一个值非概率
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            # 在第二个全连接层之后添加一个dropout层
            H2 = dropout_layer(H2, dropout2)
        out = self.lin3(H2)
        return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 3, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

运行结果如图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值