代码如下
import torch
from torch import nn
from d2l import torch as d2l
#drop函数, 概率>dropout保留, <dropout丢弃, 输出x/1-p, 使x由概率转成一个数用作下一轮的输入
def dropout_layer(x, dropout):
assert 0 <= dropout <= 1
# 在本情况中,所有元素都被丢弃
if dropout == 1:
return torch.zeros_like(x)#将x的所有值赋为0
# 在本情况中,所有元素都被保留
if dropout == 0:
return x
#torch.rand(x.shape)代表随机选出一个2行8列的矩阵; 如果矩阵中有元素值>dropout转成赋给mask, <dropout赋对应元素值为0
mask = (torch.rand(x.shape) > dropout).float()
return mask * x / (1.0 - dropout)
#生成2行8列torch格式的矩阵
x= torch.arange(16, dtype = torch.float32).reshape((2, 8))
dropout1, dropout2 = 0.2, 0.5
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
class Net(nn.Module):
def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
is_training = True):
super(Net, self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs, num_hiddens1)#定义一个网络模型, Linear是全连接层
self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)#定义2个net模型
self.lin3 = nn.Linear(num_hiddens2, num_outputs)#定义3个net模型
self.relu = nn.ReLU()
def forward(self, X):#定义前向传播
H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))#对网络模型输入, 结果经过relu激活函数转换
#H1叫第一个隐藏层的输出
#原来一次训练就是一次全连接层
# 只有在训练模型时才使用dropout
if self.training == True:
# 在第一个全连接层之后添加一个dropout层
H1 = dropout_layer(H1, dropout1)#对第一层的输出经过dropout函数转成一个值非概率
H2 = self.relu(self.lin2(H1))
if self.training == True:
# 在第二个全连接层之后添加一个dropout层
H2 = dropout_layer(H2, dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
num_epochs, lr, batch_size = 3, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()
运行结果如图