【python】详解pandas.DataFrame.loc函数

官方函数

DataFrame.loc
Access a group of rows and columns by label(s) or a boolean array.
.loc[] is primarily label based, but may also be used with a boolean array.
# 可以使用label值,但是也可以使用布尔值
Allowed inputs are: # 可以接受单个的label,多个label的列表,多个label的切片

•A single label, e.g. 5 or ‘a’, (note that 5 is interpreted as a label of the index, and never as an integer position along the index). #这里的5不是数值指定的位置,而是label值
•A list or array of labels, e.g. [‘a’, ‘b’, ‘c’].
•A slice object with labels, e.g. ‘a’:’f’.

Warning: #如果使用多个label的切片,那么切片的起始位置都是包含的

Note that contrary to usual python slices, both the start and the stop are included
•A boolean array of the same length as the axis being sliced, e.g. [True, False, True].

实例详解

一、选择数值
1、生成df
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=['cobra', 'viper', 'sidewinder'],
...      columns=['max_speed', 'shield'])

df
Out[15]: 
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8
2、Single label. 单个 row_label 返回的Series
 df.loc['viper']
Out[17]: 
max_speed    4
shield       5
Name: viper, dtype: int64
2、List of labels. 列表 row_label 返回的DataFrame
df.loc[['cobra','viper']]
Out[20]: 
       max_speed  shield
cobra          1       2
viper          4       5
3、Single label for row and column 同时选定行和列
df.loc['cobra', 'shield']
Out[24]: 2
4、Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. 同时选定多个行和单个列,注意的是通过列表选定多个row label 时,首位均是选定的。
df.loc['cobra':'viper', 'max_speed']
Out[25]: 
cobra    1
viper    4
Name: max_speed, dtype: int64
5、Boolean list with the same length as the row axis 布尔列表选择row label

布尔值列表是根据某个位置的True or False 来选定,如果某个位置的布尔值是True,则选定该row

df
Out[30]: 
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8

df.loc[[True]]
Out[31]: 
       max_speed  shield
cobra          1       2

df.loc[[True,False]]
Out[32]: 
       max_speed  shield
cobra          1       2

df.loc[[True,False,True]]
Out[33]: 
            max_speed  shield
cobra               1       2
sidewinder          7       8
6、Conditional that returns a boolean Series 条件布尔值
df.loc[df['shield'] > 6]
Out[34]: 
            max_speed  shield
sidewinder          7       8
7、Conditional that returns a boolean Series with column labels specified 条件布尔值和具体某列的数据
df.loc[df['shield'] > 6, ['max_speed']]
Out[35]: 
            max_speed
sidewinder          7
8、Callable that returns a boolean Series 通过函数得到布尔结果选定数据
df
Out[37]: 
            max_speed  shield
cobra               1       2
viper               4       5
sidewinder          7       8

df.loc[lambda df: df['shield'] == 8]
Out[38]: 
            max_speed  shield
sidewinder          7       8
二、赋值
1、Set value for all items matching the list of labels 根据某列表选定的row 及某列 column 赋值
df.loc[['viper', 'sidewinder'], ['shield']] = 50

df
Out[43]: 
            max_speed  shield
cobra               1       2
viper               4      50
sidewinder          7      50
2、Set value for an entire row 将某行row的数据全部赋值
df.loc['cobra'] =10

df
Out[48]: 
            max_speed  shield
cobra              10      10
viper               4      50
sidewinder          7      50
3、Set value for an entire column 将某列的数据完全赋值
df.loc[:, 'max_speed'] = 30

df
Out[50]: 
            max_speed  shield
cobra              30      10
viper              30      50
sidewinder         30      50
4、Set value for rows matching callable condition 条件选定rows赋值
df.loc[df['shield'] > 35] = 0

df
Out[52]: 
            max_speed  shield
cobra              30      10
viper               0       0
sidewinder          0       0
三、行索引是数值
df = pd.DataFrame([[1, 2], [4, 5], [7, 8]],
...      index=[7, 8, 9], columns=['max_speed', 'shield'])

df
Out[54]: 
   max_speed  shield
7          1       2
8          4       5
9          7       8

通过 行 rows的切片的方式取多个:

df.loc[7:9]
Out[55]: 
   max_speed  shield
7          1       2
8          4       5
9          7       8
四、多维索引
1、生成多维索引
tuples = [
...    ('cobra', 'mark i'), ('cobra', 'mark ii'),
...    ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'),
...    ('viper', 'mark ii'), ('viper', 'mark iii')
... ]
index = pd.MultiIndex.from_tuples(tuples)
values = [[12, 2], [0, 4], [10, 20],
...         [1, 4], [7, 1], [16, 36]]
df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index)


df
Out[57]: 
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36
2、Single label. 传入的就是最外层的row label,返回DataFrame
df.loc['cobra']
Out[58]: 
         max_speed  shield
mark i          12       2
mark ii          0       4
3、Single index tuple.传入的是索引元组,返回Series
df.loc[('cobra', 'mark ii')]
Out[59]: 
max_speed    0
shield       4
Name: (cobra, mark ii), dtype: int64
4、Single label for row and column.如果传入的是row和column,和传入tuple是类似的,返回Series
df.loc['cobra', 'mark i']
Out[60]: 
max_speed    12
shield        2
Name: (cobra, mark i), dtype: int64
5、Single tuple. Note using [[ ]] returns a DataFrame.传入一个数组,返回一个DataFrame
df.loc[[('cobra', 'mark ii')]]
Out[61]: 
               max_speed  shield
cobra mark ii          0       4
6、Single tuple for the index with a single label for the column 获取某个colum的某row的数据,需要左边传入多维索引的tuple,然后再传入column
df.loc[('cobra', 'mark i'), 'shield']
Out[62]: 2
7、传入多维索引和单个索引的切片:
df.loc[('cobra', 'mark i'):'viper']
Out[63]: 
                     max_speed  shield
cobra      mark i           12       2
           mark ii           0       4
sidewinder mark i           10      20
           mark ii           1       4
viper      mark ii           7       1
           mark iii         16      36

df.loc[('cobra', 'mark i'):'sidewinder']
Out[64]: 
                    max_speed  shield
cobra      mark i          12       2
           mark ii          0       4
sidewinder mark i          10      20
           mark ii          1       4

df.loc[('cobra', 'mark i'):('sidewinder','mark i')]
Out[65]: 
                    max_speed  shield
cobra      mark i          12       2
           mark ii          0       4
sidewinder mark i          10      20
  • 52
    点赞
  • 192
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值