LangChain框架的输入输出(I/O)流程是一个标准化的数据处理管道,主要由提示、语言模型和输出解析器三个核心组件构成,它们协同工作实现与语言模型的交互。
8.2.1 提示
提示(Prompt)是向语言模型提供的输入文本,用于引导模型生成特定类型的回答。LangChain提供了多种提示模板,让你可以动态地构建提示。提示的关键特性包括模板化和多类型支持。
(1)模板化:使用PromptTemplate将用户输入(如变量)动态嵌入预定义的文本模板(如“解释{term}的概念”)。
(2)多类型支持:包括少量示例提示(FewShotPromptTemplate)和对话提示(ChatPromptTemplate)等。
【示例8.1】提示。
from langchain.prompts import PromptTemplate
# 创建一个提示模板
prompt = PromptTemplate(
input_variables=["topic"],
template="请简要解释一下{topic}的基本概念。"
)
# 格式化提示
formatted_prompt = prompt.format(topic="量子计算")
print(formatted_prompt) # 输出: "请简要解释一下量子计算的基本概念。"
输出:
请简要解释一下量子计算的基本概念。
8.2.2 语言模型
LangChain支持多种语言模型(Language Model),包括OpenAI、Hugging Face等。你可以直接调用这些模型来处理提示并生成回答。语言模型接收提示并生成文本输出,主要分为大语言模型(LLM)和聊天模型(Chat Model)。
(1)大语言模型:如OpenAI的text-davinci-003,生成非结构化文本。
(2)聊天模型:如GPT-3.5-Turbo,专为多轮对话设计,输入/输出为结构化消息(HumanMessage、AIMessage)。
【示例8.2】语言模型Qwen+LangChain。
from modelscope import AutoModelForCausalLM, AutoTokenizer
from langchain.prompts import PromptTemplate
import os
# 设置镜像和缓存路径
#os.environ['MODELSCOPE_CACHE'] = './model_cache' #直接使用示例2.1下载的模型Qwen3-1.7B
os.environ['MODELSCOPE_MIRROR'] = 'https://www.modelscope.cn'
# 创建提示模板
prompt = PromptTemplate(
input_variables=["topic"],
template="请简要解释一下{topic}的基本概念。"
)
formatted_prompt = prompt.format(topic="量子计算")
print(formatted_prompt)
try:
# 尝试初始化模型
model_id = "qwen/Qwen3-1.7B"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
# 生成回答
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
except Exception as e:
print(f"加载模型时出错: {e}")
print("请检查网络连接或尝试使用离线模式")
输出:
请简要解释一下量子计算的基本概念。
量子计算是一种基于量子力学原理进行信息处理的计算方式。与传统计算机使用二进制位(0和1)不同,量子计算使用量子比特(qubit),它可以处于0、1的叠加态,并且多个量子比特之间可以形成纠缠关系。这使得量子计算机在解决某些特定问题(如大数分解、数据库搜索、量子模拟等)时,能够展现出远超传统计算机的计算能力,有望在密码学、材料科学、人工智能等领域带来革命性突破。
8.2.3 输出解析器
输出解析器(Output Parser)用于处理语言模型的输出,将其转换为结构化的数据(如JSON、列表等)。因此,它在需要特定格式回答的场景中特别有用。输出解析器的常用类型包括:
(1)结构化解析器:强制输出为指定格式(如PydanticOutputParser)。
(2)列表解析器:拆分逗号分隔的字符串为列表(CommaSeparatedListOutputParser)。
(3)重试解析器:自动修复格式错误的输出。
【示例8.3】输出解析器。
from langchain.output_parsers import CommaSeparatedListOutputParser
# 初始化输出解析器
output_parser = CommaSeparatedListOutputParser()
# 假设模型输出是一个逗号分隔的列表
model_output = "人工智能,机器学习,深度学习"
# 解析输出
parsed_output = output_parser.parse(model_output)
print(parsed_output) # 输出: ['人工智能', '机器学习', '深度学习']
输出:
['人工智能', '机器学习', '深度学习']

1044

被折叠的 条评论
为什么被折叠?



