R语言中向量和列表list的异同

R语言中,向量和list都能存放多个元素。向量中存储的是同一种元素,list是向量的一般形式,其元素类型并不一定都相同,而且其元素往往为向量或元素本身,列表为返回结果提供了一种便捷的方式。
逻辑回归支持向量机(SVM)都是常用的分类算法,它们各自有一些优点缺点。 逻辑回归的优点包括: 1. 计算简单,易于实现理解。 2. 可以直接输出概率值,对于需要得到分类概率的问题比较适用。 3. 对于线性可分线性不可分的问题都可以处理。 逻辑回归的缺点包括: 1. 对于非线性问题的拟合能力有限,需要进行特征工程或者引入高阶特征。 2. 对于数据不平衡的情况,需要进行样本平衡处理。 3. 对于噪声异常值比较敏感。 支持向量机的优点包括: 1. 在高维空间中的非线性问题上表现良好,可以通过核函数将数据映射到高维空间进行处理。 2. 对于小样本数据集有较好的泛化能力。 3. 通过支持向量的选择,可以得到稀疏的解,减少了存储计算的开销。 支持向量机的缺点包括: 1. 对于大规模数据集的训练时间较长。 2. 对于多类别问题需要进行多个二分类器的组合。 3. 对于噪声异常值比较敏感。 总结来说,逻辑回归适用于简单的线性问题需要得到概率输出的情况,而支持向量机适用于高维空间中的非线性问题小样本数据集。选择哪种算法取决于具体的问题数据特点。\[1\]\[2\] #### 引用[.reference_title] - *1* *3* [机器学习方法简介(1)--线性回归、逻辑回归、神经网络、支持向量机](https://blog.csdn.net/gan785160627/article/details/81300932)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [支持向量逻辑回归的异同](https://blog.csdn.net/weixin_34375054/article/details/92084797)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值