文章目录
1、Dataset
百度飞桨
- https://aistudio.baidu.com/datasetoverview
极市——海量数据集
- https://www.cvmart.net/dataSets
Open-Images-Dataset V6
- https://github.com/irvingzhang0512/open-images-downloader
- https://opendatalab.com/OpenDataLab/OpenImagesV6
OpenDataLab
- https://opendatalab.com/
【Classification】
- CIFAR-10
- CIFAR-100
- COCO
- ImageNet
- MNIST
- SVHN
【Object detection】
- COCO
- PASCAL VOC
- Caltech101
- Open Images
- IsOccluded: 表示目标被图像中的另一目标遮蔽。
- IsTruncated: 表示目标超出了图像的边界。
- IsGroupOf: 表示边界框覆盖了一群目标(例如:一床花朵、一群人)。当图像中的实例(instances )超过 5 个并且各实例相互重叠或交叠时,我们会要求标注员使用这个标签。
- IsDepiction: 表示目标是一幅画(例如:目标的卡通画或素描,不是真正的实体实例)。
- IsInside: 表示是从对象内部(例如汽车内部或建筑物内部)拍摄的照片。
fire & smoke detection
参考来自:火灾检测——相关数据集
- MIVIA Fire Detection Dataset
- FireNet-LightWeight-Network-for-Fire-Detection
- Fire Flame Dataset(Deep Quest AI)
- FIRESENSE Database
- furg-fire-dataset-master (Hüttner et al.)
- CVPR Lab ——KMU Fire and Smoke database
- BoWFireDataset (Chino et al.)
- Sharma’s Dataset (Sharma et al.)
Traffic Sign
- TT100K
Bird
- Caltech-UCSD Birds 200 (CUB-200):这是一个经典的细粒度鸟类分类数据集,包含200种鸟类的11,788张图像。每张图像都提供了详细的标注,包括鸟类的边界框、关键部位以及属性信息。这个数据集常被用于鸟类检测和识别任务。
- PASCAL VOC中的鸟类子集
【Tracking】
参考来自
-
AU-AIR 第一个用于目标检测的多模态无人机数据集
-
KITTI 目标跟踪
-
ALOV300++
-
PathTrack 数据集
-
Temple Color 128
-
OTB50 / 100
有很多人脸和人形,shape 固定
-
Dataset-AMP: Luka Čehovin Zajc; Alan Lukežič; Aleš Leonardis; Matej Kristan. “Beyond Standard Benchmarks: Parameterizing Performance Evaluation in Visual Object Tracking.” ICCV (2017)
-
Dataset-Nfs: Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan and Simon Lucey. “Need for Speed: A Benchmark for Higher Frame Rate Object Tracking.” ICCV (2017)
-
Dataset-DTB70: Siyi Li, Dit-Yan Yeung. “Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark and New Motion Models.” AAAI (2017)
-
Dataset-UAV123: Matthias Mueller, Neil Smith and Bernard Ghanem. “A Benchmark and Simulator for UAV Tracking.” ECCV (2016)
-
Dataset-TColor-128: Pengpeng Liang, Erik Blasch, Haibin Ling. “Encoding color information for visual tracking: Algorithms and benchmark.” TIP (2015)
-
Dataset-NUS-PRO: Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. “NUS-PRO: A New Visual Tracking Challenge.” PAMI (2015)
-
Dataset-PTB: Shuran Song and Jianxiong Xiao. “Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines.” ICCV (2013)
-
Dataset-ALOV300+: Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, Mubarak Shah. “Visual Tracking: An Experimental Survey.” PAMI (2014)
-
OTB2013: Wu, Yi, Jongwoo Lim, and Minghsuan Yang. “Online Object Tracking: A Benchmark.” CVPR (2013)
-
OTB2015: Wu, Yi, Jongwoo Lim, and Minghsuan Yang. “Object Tracking Benchmark.” TPAMI (2015)
-
Dataset-VOT
-
VID:Visual Object Tracking benchmark for Large-scale MOTion Analysis,微软研究院和清华大学合作创建,2015
-
YouTube-BB数据集(YouTube-Bounding Boxes),谷歌,2016
-
DET数据集(PASCAL VOC Detection Challenge)是一个用于图像目标检测的公共数据集,由牛津大学、德国马克斯普朗克研究所以及荷兰阿姆斯特丹大学联合创建。该数据集首次发布于2007年,自那以后已经成为图像目标检测领域的标准基准数据集之一。
-
COCO数据集(Common Objects in Context)是一个用于目标检测、分割和关键点检测的大规模公共数据集。该数据集由微软公司于2014年发布,旨在提供一个丰富多样的真实场景图像数据集,以促进计算机视觉领域的研究和发展。
【Segmentation】
- COCO
- PASCAL VOC
- Cityscapes dataset
- LVIS
【Human】
- Caltech Pedestrian Detection Benchmark(Caltech行人数据库)
- COCOPersons,64115 images from the trainval minus minival for training, and the other 2639 images from minival for validation.
- CityPersons
- WiderPerson
- Brainwash
- KITTI
- Cityscapes dataset
- MIT-CBCL Pedestrian Database(MIT行人数据库)
- USC Pedestrian Detection Test Set(USC行人数据库)
- Daimler Pedestrian Detection Benchmark (戴姆勒行人检测标准数据库)
- DukeMTMC-reID
- INRIA Person Dataset(INRIA行人数据库)
- BIWI Walking Pedestrians dataset
- Central Pedestrian Crossing Sequences
- Dataset used in our ICCV '07 paper Depth and Appearance for Mobile Scene Analysis
- Human detection and tracking using RGB-D camera
- CUHK Occlusion Dataset
- CUHK Person Re-identification Datasets
- CUHK Square Dataset
- EuroCity Persons-ECP
- Berkeley DeepDrive-BDD100K
- 滴滴出行 D2-City数据集
- 百度ApolloScape-Trajectory
- 百度ApolloScape-3D Lidar object detection and tracking dataset
- 百度ApolloScape-Scene Parsing
- 旷视人群数据集-CrowdHuman
- 夜间行人数据集 NightOwls dataset
拥挤人群计数
- UCF-CC-50,https://www.crcv.ucf.edu/data/ucf-cc-50/
- UCF-QNRF,https://www.crcv.ucf.edu/data/ucf-qnrf/
- auDiovISual Crowd cOunting (DISCO),https://zenodo.org/records/3828468
【Human Pose Estimation】
- KTH 多视图足球数据集,http://m6z.cn/692agI
- Penn Action Dataset,宾夕法尼亚动作数据集,http://m6z.cn/692akK
- BBC姿态数据集,http://m6z.cn/5xr6Xq
- Poser 数据集,http://m6z.cn/6gynqz
- 野外 3D 姿势数据集,http://m6z.cn/5xr6Z2
- V-COCO数据集,http://m6z.cn/5UGaii
- 宜家 ASM 数据集,http://m6z.cn/692aos
- 立体人体姿势估计数据集,http://m6z.cn/62cnp5
- AIST++ 舞蹈动作数据集,http://m6z.cn/5xr6M8
- HiEve数据集,http://m6z.cn/6o4AAg
【ReID】
Person re-identification
- DukeMTMC-reID,https://github.com/sxzrt/DukeMTMC-reID_evaluation
- SYSU-30k,https://github.com/wanggrun/SYSU-30k
- PETA,https://mmlab.ie.cuhk.edu.hk/projects/PETA.html
- Market-1501,http://www.liangzheng.com.cn/
【Face】
detection
- AFLW
- AFW
- FDDB
- PASCAL Face dataset
- WiderFace
- UFDD(Unconstrained Face Detection Dataset )
recognition
- BUAA VISNIR
- CASIA NIR-VIS 2.0 face database
- CBSR
- CFP
- DeepGlint
- IDIAP(Multispectral-Spoof (MSSpoof) — English (idiap.ch))
- IJBC
- Glint360K
- LFW(Labeled Faces in the Wild)1:1
- MegaFace,欧氏距离
- Oulu-CASIA NIR-VIS
- PolyU NIR face
- WebFace
- WHU VIS-NIR paired face
anti-spoofing
- NUAA——2010
- YALE-Recaptured——2011
- PRINT-ATTACK——2011
- IDIAP Replay-Attack——2012
- CASIA FASD——2012
- MSU MFSD——2016
- MsSpoof——2016
- OULU-NPU——2017
- SiW——2018
- SiW-M——2019
- 3DMAD——2013
- Morpho——2014
- 3DFSDB——2016
- BRSU——2016
- HKBU-MARs-v1——2016
- HKBU-MARs-v2——2020
- Silicone-SMAD——2017
- MLFP——2017
- Rose Youtu——2018
- XCSMAD——2019
- WMCA——2019
- CASIA-SURF——2019
- CeFA——2021
facial expression
- 用于CV算法的面部表情图像数据集,http://suo.nz/2Rhtp7
- 从面部图像预测人物性格,http://suo.nz/2JLgAy
- 面部年龄数据集,http://suo.nz/2J0E55
- 人脸面部表情数据集,http://suo.nz/2Bur0o
- 面部情感识别数据集,http://suo.nz/2tYdVH
- 动物表情图像数据集,http://suo.nz/2ms0R0
- FER2013数据集
- FER-Plus(FER+)数据集
- RAF-DB数据集
- CK+(Cohn-Kanade+)数据集
- AffectNet数据集
- MMAFEDB数据集
- JAFFE数据集
- KDEF数据集
- GENKI数据集
- RaFD数据集
- Cohn-Kanade AU-Coded Expression Database数据集
- EmotioNet数据集
- FERET数据集
- Labeled Faces in the Wild (LFW)数据集
【3D】
Du X, Sun H, Wang S, et al. 3DRealCar: An In-the-wild RGB-D Car Dataset with 360-degree Views[J]. arXiv preprint arXiv:2406.04875, 2024.
point cloud segmentation
经典方法
- PointNet/PointNet++
- PCT网络
- Cylinder网络
- JSNet网络
分割数据集
- Semantic3D,http://www.semantic3d.net/
- S3DIS,http://buildingparser.stanford.edu/dataset.html
- SemanticKITTI,http://www.semantic-kitti.org/index.html
- ShapeNet,https://www.shapenet.org/
- PartNet,https://shapenet.org/download/parts
视觉定位
- 7 Scenes数据集
- Inloc数据集,http://www.ok.sc.e.titech.ac.jp/INLOC/
- Gangnam Station and Hyundai Department Store,https://github.com/naver/kapture/blob/main/doc/tutorial.adoc#download-a-dataset
- LaMAR数据集,https://lamar.ethz.ch/
- Cambridge,mi.eng.cam.ac.uk/projects/relocalisation/
- Aachen Day-Night,https://data.ciirc.cvut.cz/public/projects/2020VisualLocalization/Aachen-Day-Night/
- RobotCar Seasons,https://data.ciirc.cvut.cz/public/projects/2020VisualLocalization/RobotCar-Seasons/
- CMU Seasons,https://data.ciirc.cvut.cz/public/projects/2020VisualLocalization/CMU-Seasons/
- SILDA,https://www.visuallocalization.net/datasets/
【图像质量】
-
ExDark(低光图像)
下载地址:http://suo.nz/2lidoI
Exclusively Dark (ExDARK) 数据集是 7,363 张从极低光环境到黄昏(即 10 种不同条件)的低光图像的集合,具有 12 个对象类(类似于 PASCAL VOC),在图像类级别和局部对象边界上进行了注释盒子 -
PolyU(图像噪声)
数据集下载地址:https://sourl.cn/rMsdE8
大多数以前的图像去噪方法都集中在加性高斯白噪声(AWGN)上。然而,随着计算机视觉技术的进步,现实世界中的噪声图像去噪问题也随之而来。为了在实现并发真实世界图像去噪数据集的同时促进对该问题的研究,作者们构建了一个新的基准数据集,其中包含不同自然场景的综合真实世界噪声图像。这些图像是由不同的相机在不同的相机设置下拍摄的。 -
WoodScape(自动驾驶鱼眼)
下载地址:http://suo.nz/2HMEtL
WoodScape 包含四个环视摄像头和九项任务,包括分割、深度估计、3D 边界框检测和新型污染检测。为超过 10,000 张图像提供实例级别的 40 个类的语义注释。
【Image Inpainting】
经典方法
- LaMa,https://github.com/advimman/lama
- PowerPaint,https://github.com/open-mmlab/PowerPaint
- IOPaint,https://github.com/Sanster/IOPaint
- BrushNet,https://github.com/TencentARC/BrushNet
- MAT,https://github.com/fenglinglwb/MAT
数据集
- CelebA Dataset,https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
- Places2,http://places2.csail.mit.edu/download.html
- NVIDIA Irregular Mask Dataset,https://nv-adlr.github.io/publication/partialconv-inpainting
2、标注工具
-
LabelImg
-
Labelme
-
X-AnyLabling(半自动标注)
3、生成数据
-
GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image
https://github.com/GenImage-Dataset/GenImage -
MetFaces,https://www.cvmart.net/dataSets/detail/1150
-
Flickr-Faces-HQ Dataset (FFHQ),ttps://www.cvmart.net/dataSets/detail/1151
-
Oxford 102 Flower,https://www.cvmart.net/dataSets/detail/1152
-
CelebAMask-HQ,https://www.cvmart.net/dataSets/detail/1153
-
WHOOPS!,https://www.cvmart.net/dataSets/detail/1154
-
Cityscapes,https://www.cvmart.net/dataSets/detail/481