Naive Bayes(Simple Example)


1 假设

计算 P ( X ∣ C i ) P(X|C_i) P(XCi),朴素贝叶斯分类假设类条件独立,即给定样本属性值相互条件独立。
P ( x 1 , … , x k ∣ C i ) = P ( x 1 ∣ C i ) ⋅ … ⋅ P ( x k ∣ C i ) P(x_1,…,x_k|C_i) = P(x_1|C_i)·…·P(x_k|C_i) P(x1,,xkCi)=P(x1Ci)P(xkCi)

2 Notion

贝叶斯定理 P ( C i ∣ X ) = P ( X ∣ C i )   ⋅   P ( C i ) P ( X ) = P ( X ∣ C i )   ⋅   P ( C i ) ∑ j = 1 c P ( X ∣ C j )   ⋅   P ( C j ) P(C_i|X)= \frac {P(X|C_i) \ \cdot \ P(C_i)} {P(X)} = \frac {P(X|C_i) \ \cdot \ P(C_i)} {\sum_{j=1}^{c}P(X|C_j) \ \cdot \ P(C_j) } P(CiX)=P(X)P(XCi)  P(Ci)=j=1cP(XCj)  P(Cj)P(XCi)  P(Ci)

i i i 表示 l a b e l label label 的类别数

j j j 也表示 l a b e l label label 的类别数,只是为了区别于 i i i

先验概率 p r i o r   p r o b a b i l i t y prior \ probability prior probability P ( C i ) P(C_i) P(Ci),在事情发生之前的概率。根据以往经验和分析得到的概率!eg,比如抛硬币,我们都认为正面朝上的概率是 0.5!

概率密度函数 p r o b a b i l i t y   d e n s i t y   f u n c t i o n probability \ density \ function probability density function: P ( X ∣ C i ) P(X|C_i) P(XCi)

后验概率 p o s t e r i o r   p r o b a b i l i t i e s posterior \ probabilities posterior probabilities P ( C i ∣ X ) P(C_i|X) P(CiX),事情发生了,可能有很多原因,判断事情发生时由哪个原因引起的概率!

总结,根据先验概率和概率密度函数,计算后验概率

eg: 对于一个二分类问题, y e s   o r   n o yes \ or \ no yes or no, 对应的贝叶斯公式如下

P ( Y e s ∣ X ) = P ( X ∣ Y e s ) ⋅ P ( Y e s ) P ( X ) = P ( X ∣ Y e s )   ⋅   P ( Y e s ) P ( X ∣ Y e s ) ⋅ P ( Y e s ) + P ( X ∣ N o ) ⋅ P ( N o ) P(Yes|X)= \frac {P(X|Yes) \cdot P(Yes)} {P(X)} = \frac {P(X|Yes) \ \cdot \ P(Yes)} {P(X|Yes) \cdot P(Yes) + P(X|No) \cdot P(No)} P(YesX)=P(X)P(XYes)P(Yes)=P(XYes)P(Yes)+P(XNo)P(No)P(XYes)  P(Yes)

P ( N o ∣ X ) = P ( X ∣ N o ) ⋅ P ( N o ) P ( X ) = P ( X ∣ N o )   ⋅   P ( N o ) P ( X ∣ Y e s ) ⋅ P ( Y e s ) + P ( X ∣ N o ) ⋅ P ( N o ) P(No|X)= \frac {P(X|No) \cdot P(No)} {P(X)} = \frac {P(X|No) \ \cdot \ P(No)} {P(X|Yes) \cdot P(Yes) + P(X|No) \cdot P(No)} P(NoX)=P(X)P(XNo)P(No)=P(XYes)P(Yes)+P(XNo)P(No)P(XNo)  P(No)

如果 P ( Y e s ∣ X ) > P ( N o ∣ X ) P(Yes|X)>P(No|X) P(YesX)>P(NoX),分类结果为 Y e s Yes Yes,反之结果为 N o No No


3 Simple Example

这里写图片描述

X = { G e n d e r = F e m a l e , I n c o m e = H i g h , A g e = M i d d l e } X = \left \{ Gender = Female,Income = High, Age = Middle \right \} X={Gender=Female,Income=High,Age=Middle} 计算分类结果 Y e s   o r   N o Yes \ or \ No Yes or No


P ( Y e s ) = 3 / 6 P(Yes) = 3 / 6 P(Yes)=3/6

这里写图片描述

由图知

P ( G e n d e r = F e m a l e ∣ Y e s ) = 2 / 3 P\left (Gender = Female \mid Yes\right ) = 2/3 P(Gender=FemaleYes)=2/3

P ( I n c o m e = H i g h ∣ Y e s ) = 3 / 3 P\left ( Income = High \mid Yes\right ) = 3/3 P(Income=HighYes)=3/3

P ( A g e = M i d d l e ∣ Y e s ) = 1 / 3 P\left ( Age = Middle \mid Yes\right ) = 1/3 P(Age=MiddleYes)=1/3

所以

P ( X ∣ Y e s ) ⋅ P ( Y e s ) = P ( G e n d e r = F e m a l e ∣ Y e s ) ⋅ P ( I n c o m e = H i g h ∣ Y e s ) ⋅ P ( A g e = M i d d l e ∣ Y e s ) ⋅ P ( Y e s ) = 2 3 × 3 3 × 1 3 × 3 6 ≈ 0.111 P\left ( X\mid Yes \right ) \cdot P(Yes)= P\left (Gender = Female \mid Yes\right )\cdot P\left ( Income = High \mid Yes\right )\cdot P\left ( Age = Middle \mid Yes\right ) \cdot P(Yes) = \frac{2}{3}\times\frac{3}{3}\times\frac{1}{3}\times\frac{3}{6} \approx 0.111 P(XYes)P(Yes)=P(Gender=FemaleYes)P(Income=HighYes)P(Age=MiddleYes)P(Yes)=32×33×31×630.111


P ( N o ) = 3 / 6 P(No) = 3/6 P(No)=3/6
这里写图片描述

由图知

P ( G e n d e r = F e m a l e ∣ N o ) = 1 / 3 P\left (Gender = Female \mid No\right ) = 1/3 P(Gender=FemaleNo)=1/3

P ( I n c o m e = H i g h ∣ N o ) = 1 / 3 P\left ( Income = High \mid No\right ) = 1/3 P(Income=HighNo)=1/3

P ( A g e = M i d d l e ∣ N o ) = 2 / 3 P\left ( Age = Middle \mid No\right ) = 2/3 P(Age=MiddleNo)=2/3

所以

P ( X ∣ N o ) ⋅ P ( N o ) = P ( G e n d e r = F e m a l e ∣ N o ) ⋅ P ( I n c o m e = H i g h ∣ N o ) ⋅ P ( A g e = M i d d l e ∣ N o ) ⋅ P ( N o ) = 1 3 × 1 3 × 2 3 × 3 6 = 0.037 P\left ( X\mid No \right ) \cdot P(No)= P\left (Gender = Female \mid No\right )\cdot P\left ( Income = High \mid No\right )\cdot P\left ( Age = Middle \mid No\right ) \cdot P(No) = \frac{1}{3}\times\frac{1}{3}\times\frac{2}{3}\times\frac{3}{6} = 0.037 P(XNo)P(No)=P(Gender=FemaleNo)P(Income=HighNo)P(Age=MiddleNo)P(No)=31×31×32×63=0.037


P ( Y e s ∣ X ) = P ( X ∣ Y e s )   ⋅   P ( Y e s ) P ( X ∣ Y e s ) ⋅ P ( Y e s ) + P ( X ∣ N o ) ⋅ P ( N o ) = 0.111 0.111 + 0.037 = 75 % P(Yes|X)= \frac {P(X|Yes) \ \cdot \ P(Yes)} {P(X|Yes) \cdot P(Yes) + P(X|No) \cdot P(No)} = \frac{0.111}{0.111+0.037} = 75 \% P(YesX)=P(XYes)P(Yes)+P(XNo)P(No)P(XYes)  P(Yes)=0.111+0.0370.111=75%

P ( N o ∣ X ) = P ( X ∣ N o )   ⋅   P ( N o ) P ( X ∣ Y e s ) ⋅ P ( Y e s ) + P ( X ∣ N o ) ⋅ P ( N o ) = 0.037 0.111 + 0.037 = 25 % P(No|X)= \frac {P(X|No) \ \cdot \ P(No)} {P(X|Yes) \cdot P(Yes) + P(X|No) \cdot P(No)} = \frac{0.037}{0.111+0.037} = 25 \% P(NoX)=P(XYes)P(Yes)+P(XNo)P(No)P(XNo)  P(No)=0.111+0.0370.037=25%

因为

P ( Y e s ∣ X ) > P ( N o ∣ X ) P(Yes|X)>P(No|X) P(YesX)>P(NoX)

所以

分类结果为 Y e s Yes Yes

4 基于最小错误率的贝叶斯决策

为什么后验概率要利用Bayes公式从先验概率和类条件概率密度函数计算获得。这是因为计算概率都要拥有大量数据才行。在估计先验概率与类条件概率密度函数时都可搜集到大量样本,而对某一特定事件(如x)要搜集大量样本是不太容易
的。因此只能借助Bayes公式来计算得到。

对基于最小错误率的贝叶斯决策来说,以后验概率值的大小作判据是最基本的方法,而其它形式的作用(如下)都基本相同,但使用时更方便些。

(1)

如果
P ( w i ∣ x ) = max ⁡ j = 1 , 2 P ( w j ∣ x ) P(w_i|x)= \max_{j=1,2}P(w_j|x) P(wix)=j=1,2maxP(wjx)

x ∈ w i x\in w_i xwi

(2)

如果 P ( x ∣ w i ) P ( w i ) = max ⁡ j = 1 , 2 P ( x ∣ w j ) P ( w i ) P(x|w_i)P(w_i)= \max_{j=1,2}P(x|w_j)P(w_i) P(xwi)P(wi)=j=1,2maxP(xwj)P(wi)

x ∈ w i x \in w_i xwi

(3)似然比

如果 l ( x ) = p ( x ∣ w 1 ) p ( x ∣ w 2 ) > p ( w 2 ) p ( w 1 ) l(x) = \frac{p(x|w_1)}{p(x|w_2)} > \frac{p(w_2)}{p(w_1)} l(x)=p(xw2)p(xw1)>p(w1)p(w2)


x ∈ w 1 x \in w_1 xw1
否则
x ∈ w 2 x \in w_2 xw2

(4) 似然比的负对数 -ln

这里写图片描述
P ( e ) = ∫ R 1 P ( x ∣ w 2 ) P ( w 2 ) d x + ∫ R 2 P ( x ∣ w 1 ) P ( w 1 ) d x P(e) = \int_{R_1}P(x|w_2)P(w_2)dx + \int_{R_2}P(x|w_1)P(w_1)dx P(e)=R1P(xw2)P(w2)dx+R2P(xw1)P(w1)dx

如下图所示

这里写图片描述
阴影处就是 P ( e ) P(e) P(e) ,也可以写成

P ( e ) = ∫ R 1 P ( w 2 ∣ x ) P ( x ) d x + ∫ R 2 P ( w 1 ∣ x ) P ( x ) d x P(e) = \int_{R_1}P(w_2|x)P(x)dx + \int_{R_2}P(w_1|x)P(x)dx P(e)=R1P(w2x)P(x)dx+R2P(w1x)P(x)dx

5 基于最小风险贝叶斯决策

加了权重

在决策中,除了关心决策的正确与否,有时我们更关心错误的决策将带来的损失。比如在判断细胞是否为癌细胞的决策中,若把正常细胞判定为癌细胞,将会增加患者的负担和不必要的治疗,但若把癌细胞判定为正常细胞,将会导致患者失去宝贵的发现和治疗癌症的机会,甚至会影响患者的生命。这两种类型的决策错误所产生的代价是不同的。

考虑各种错误造成损失不同时的一种最优决策,就是所谓的最小风险贝叶斯决策。设对于实际状态为wj 的向量xx采取决策αi 所带来的损失为

这里写图片描述
该函数称为损失函数,通常它可以用表格的形式给出,叫做决策表。需要知道,最小风险贝叶斯决策中的决策表是需要人为确定的,决策表不同会导致决策结果的不同,因此在实际应用中,需要认真分析所研究问题的内在特点和分类目的,与应用领域的专家共同设计出适当的决策表,才能保证模式识别发挥有效的作用。
对于一个实际问题,对于样本xx,最小风险贝叶斯决策的计算步骤如下:
(1)利用贝叶斯公式计算后验概率:
这里写图片描述

其中要求先验概率和类条件概率已知。
(2)利用决策表,计算条件风险:
这里写图片描述

(3)决策:选择风险最小的决策,即:
这里写图片描述

现在用之前的判别细胞是否为癌细胞为例。状态1为正常细胞,状态2为癌细胞,假设:
这里写图片描述

这里写图片描述


参考 最小风险贝叶斯决策

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值