让你奶奶轻松搞懂Naive Bayes的理论与实践

这篇是从我的简书账号移植过来的 ,因为之前简书出了一些问题,所以有些格式无法完美兼容,所以附上链接,同学们请点我

stay simple,stay naive

hahaha,今天连文章的第一句话都改了。
不过,我标题党了… …毕竟你奶奶可能连概率是什么都不知道,而我这里没有基础的教学。之所以取这个名字是因为,你只要顺着我的思路认真读下去,可以清楚地融会贯通Naive Bayes,搞懂它的原理。

朴素贝叶斯(Naive Bayes)是基于贝叶斯定理特征条件独立假设的分类方法。
换句话说,Naive Bayes的构造基础是贝叶斯定理,基本数学假设是:输入数据在各个维度上的特征被分类的条件概率之间是相互独立的。

本文将从朴素贝叶斯的算法出发,一点一点的剖析算法的原理,分析清楚朴素贝叶斯为什么要这样进行运算。
最后。上手实践。


朴素贝叶斯算法(naive Bayes algorithm)
输入:训练数据 T = {(x~1~,y~1~),(x~2~,y~2~),(x~3~,y~3~),···,(x~N~,y~N~)}
其中x~i~ = (x~i~^(1)^, x~i~^(2)^, …, x~i~^(n)^)^T^,x~i~代表一条实例,这个数据集中每一条实例都由n个维度组成。
x~i~^(j)^是训练数据中第i个样本的第j维特征。
x~i~^(j)^∈{a~j1~, a~j2~, a~j3~, a~j4~, …, a~jS~},说明j维可以在a这个集合中取值。
y~i~是x~i~这个实例对应的类别,有可能是c~1~,c~2~,c~3~,··· , c~K~。
输出:实例x的分类
1. 计算先验概率及条件概率
2. 根据输入的数据x~i~ = (x~i~^(1)^, x~i~^(2)^, …, x~i~^(n)^)^T^计算后验概率。
3. 最大化后验概率,得到x~i~对应的类别。


我知道你没看懂。
因为上述算法只是一个引子,请认真阅读下边的内容,我会从头开始分析,讲清楚上边的算法为什么是这样,引导你真正懂得朴素贝叶斯。

注:
= = 经过之前有一篇文章受累不讨好地使用Latex手打公式,最后还出现了下图错误无法加载的情况,这次我决定手写,同学们就凑合看吧。O__O “…
教训

用通俗的话来讲,朴素贝叶斯,就是要学习一个X与Y的联合概率分布,这个联合概率分布就代表了X与某个Y之间的组合的可能性。这个联合概率分布学好了,就意味着朴素贝叶斯这个模型学好了。有了这个联合概率分布,再给一个输入值x,我想,学过概率的人都应该知道怎么计算在x的条件下的条件概率吧。这就是朴素贝叶斯的基本思路,非常简单,具体怎么计算,向下看。

在使用朴素贝叶斯分类时,有给定的输入x, 和训练得到的P(X, Y),就可以计算得到模型的后验概率分布P(Y = c~k~ | X = x),也就是说得到了在X = x的条件下Y = c~k~的概率。最大化P(Y = c~k~ | X = x),等同于Y = c~k~的概率最大时的那个c~k~,就是这个模型的输出,就是输入x的类别。最大化后验概率,这是后话。这里就来解释一下这个后验概率。

公式推导

请看上图,公式(1࿰

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值