Prompt Tuning:轻量级微调与反向传播揭秘

1394 篇文章 ¥199.90 ¥299.90
984 篇文章 ¥199.90 ¥299.90
792 篇文章 ¥199.90 ¥299.90

Prompt Tuning 损失函数与反向传播原理解析

在Transformers中,Prompt Tuning是一种轻量级参数高效微调方法,其核心思想是只训练额外添加的提示词向量(prompt embeddings),而冻结预训练模型的主体参数。

损失函数设计

Prompt Tuning的损失函数与标准的语言模型训练类似,主要基于交叉熵损失:

  1. 对于生成任务(如文本生成、摘要):

    L = -1/N ∑ log P(y_i | [P;x])
    

    其中[P;x]表示原始输入x前拼接上可训练的提示P,y_i是目标词,N是序列长度。

  2. 对于分类任务(如情感分析、文本分类):

    L = - ∑ y_true * log(softmax(cls([P;x])))
    

    其中cls()表示取[CLS]标记的输出,y_true是真实标签分布。

反向传播机制

Prompt Tuning的反向传播有两个关键特点:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值