推导有心斥力场质点运动方程

文章探讨了有心斥力场中质点的运动轨迹,通过极坐标建立方程,其中涉及质点的势能、动能和角动量。推导过程中,利用双曲线与轨迹的关系,将不定积分的常数设定为π以符合物理意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

规定该有心斥力场中斥力满足的形式为

其中,为矢径的方向向量。

以有心力场中心为原点建立极坐标,质点在斥力场中运动极坐标方程如下所示

其中,参数和参数的含义分别

其中为质点在有心斥力场中势能和动能之和,为质点对有心力场中心的角动量。具体的可以看下图中的解释。

下面为推导过程

注意,为了使双曲线右焦点与有心斥力场中心重合,且双曲线左支恰好为质点运动的轨迹。我强行把不定积分得到的常数c确定为π。这个做法是可行的,就是考虑实际物理情况,舍去非物理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值