机器学习-10 基于sklearn支持向量机

本文详细介绍了支持向量机(SVM)在分类中的应用,讲解了SVM的基本思想、优化目标和拉格朗日乘子法。同时,文章还展示了如何将SVM扩展用于回归问题,提到了不同类型的SVM实现,如SVR、NuSVR和LinearSVR,并探讨了核函数的选择,如Sigmoid和径向基函数。
摘要由CSDN通过智能技术生成

机器学习-10 基于sklearn支持向量机

支持向量机——分类

支持向量机 (SVMs) 的应用面比较广,可用于回归、分类和和 异常检测。其最常见的应用是做分类。
支持向量机(Support Vector Machine, SVM) 是由最优分类面衍生而来, 在线性可分情况中, 其根本思想是将特征向量映射到一个比自身维度更高的空间里,在这个空间里建立一个新的隔离平面,使得隶属不同类别的特征向量点间隔最大。各类别对应的平行超平面间的距离越大,分类器的总误差则越小。
设 n 个样本的训练合集为 ( x i , y i ) , i = 1 , 2 , … … , n (x_{i},y_{i}),i=1,2,……,n (xi,yi)i=1,2,n d d d维空间中线性判别函数的形式为
g ( x ) = w x + b g(x)=wx+b g(x)=wx+b
某数据点 x i x_{i} xi到分类平面的距离可以表示为 ∣ ω x + b ∣ ∥ ω ∥ \frac{\left| \omega x+b \right|}{\left\| \omega \right\|} ωωx+b,点到原点的距离为 ∣ b ∣ ∥ ω ∥ \frac{\left| b \right|}{\left\| \omega \right\|} ωb
离分类平面最近的数据点和它们对应的平行超平面,将判别函数归一化使所有数据点都满足 ∣ g ( x ) ∣ ≥ 1 \left| g(x) \right|\ge 1 g(x)1,且距分类平面距离最小的数据点 ∣ g ( x ) ∣ = 1 \left| g(x) \right|=1 g(x)=1。计算 ∥ ω ∥ 2 2 \frac{ { {\left\| \omega \right\|}^{2}}}{2} 2ω2极小值优化分类平面,使分类间隔最大化。
约束条件为:
y i [ ω x + b ] − 1 ≥ 0 { {y}_{i}}[\omega x+b]-1\ge 0 yi[ωx+b]10
目标函数为:
φ ( ω ) = 1 2 ∥ ω ∥ 2 = 1 2 ( ω , ω ) \varphi (\omega )=\frac{1}{2}{ {\left\| \omega \right\|}^{2}}=\frac{1}{2}(\omega ,\omega ) φ(ω)=21ω2=21(ω,ω)
可定义如下的 L a g r a n g e Lagrange Lagrange 函数
L ( ω , b , a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值