高等代数第2章 行列式

这篇博客详细探讨了高等代数中的行列式,包括n元排列、行列式的定义、性质、按行(列)展开的方法以及克莱姆法则。讲解了奇偶排列的概念,举例说明了行列式定义的直观理解,特别强调了行列式性质中行和列的对等地位。还提到了行列式按k行(列)展开的定理证明,指出其难度,并提及范德蒙行列式的重要性和克莱姆法则的交换顺序技巧。最后,提及了实际应用中的挑战。
摘要由CSDN通过智能技术生成

2.1 n元排列

逆序数 τ
奇排列 偶排列

例5只是例4的简单加强版
例6还是挺有技巧性的。

2.2 n阶行列式的定义

定义1第一次看肯定一头雾水,为什么要这样定义,能不能用别的方式定义?

例5看起来是显然的,如例3,要把证明写出来还真有点难度

习题2.2-6可以看下,其它都很简单

2.3 行列式的性质

行和列地位对等,直觉是这样,而根据行列式定义进行计算,也确实是这样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值