(1)首先看能不能使某行(列)的元素全相等.
(2)若在某步中出现形如
KaTeX parse error: Unknown column alignment: * at position 22: … \begin{array}{*̲{20}{c}} *&*& \…
等形状,可用对角线元素将第1行(列)化为0,即可变成三角形.
(3)若出现
KaTeX parse error: Unknown column alignment: * at position 23: …{\begin{array}{*̲{20}{c}} {
{x_1}…
形式,则加一行一列,可化为(1).
(4)若出现
KaTeX parse error: Unknown column alignment: * at position 23: …{\begin{array}{*̲{20}{c}} {
{x_1}…
形式,则用最后一列按行列式加法分解成两个行列式:一个最后一列只有一个非零元素,另一个最后一列全相等.第一个按最后一行展开可得递推式,另一个是(1)的形式.
(5)若出现
KaTeX parse error: Unknown column alignment: * at position 23: …{\begin{array}{*̲{20}{c}} {
{x_1}…
则提取各列公因子.
(6)三线行列式
KaTeX parse error: Unknown column alignment: * at position 23: …{\begin{array}{*̲{20}{c}} a&b&{}…
则先按第1行(列)展开,再按第1列(行)展开,即得递推式,是关于 D n D_n Dn的二阶差分方程,可取两个数 s , t : s + t = a , s t = b c s,t:s+t=a,st=bc s,t:s+t=a,st=bc(即令 2 s = a + a 2 − 4 b c , 2 t = a − a 2 − 4 b c 2s=a+\sqrt{a^2-4bc}, 2t=a-\sqrt{a^2-4bc} 2s=a+a2
高等代数中行列式的计算总结
于 2016-04-10 12:31:29 首次发布