高等代数复习:行列式

本篇文章适合个人复习翻阅,不建议新手入门使用
参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

1.行列式基本知识

1.1 归纳地定义行列式

二阶:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 21 a 12 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{vmatrix}=a_{11}a_{22}-a_{21}a_{12} a11a21a12a22 =a11a22a21a12

三阶:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 \begin{vmatrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{vmatrix}=a_{11}M_{11}-a_{21}M_{21}+a_{31}M_{31} a11a21a31a12a22a32a13a23a33 =a11M11a21M21+a31M31

n阶:
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 \begin{split} &\begin{vmatrix} a_{11}& a_{12}& \cdots &a_{1n}\\ a_{21}& a_{22}& \cdots &a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots&a_{nn}\\ \end{vmatrix}\\ &\quad\\ =a_{11}M_{11}&-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1} \end{split} =a11M11 a11a21an1a12a22an2a1na2nann a21M21++(1)n+1an1Mn1

其中M代表余子式,可以记 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (1)i+jMij A i j A_{ij} Aij,称作代数余子式

1.2 组合定义

行列式也可以一般地定义行列式,记 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n,则有
∣ A ∣ = ∑ ( k 1 , k 2 , … , k n ) ∈ S n ( − 1 ) N ( k 1 , k 2 , … , k n ) a k 1 1 a k 2 2 ⋯ a k n n |A|=\sum\limits_{(k_1,k_2,\dots,k_n)\in S_n}(-1)^{N(k_1,k_2,\dots,k_n)}a_{k_11}a_{k_22}\cdots a_{k_nn} A=(k1,k2,,kn)Sn(1)N(k1,k2,,kn)ak11ak22aknn
其中 N ( k 1 , k 2 , … , k n ) N(k_1,k_2,\dots,k_n) N(k1,k2,,kn)表示排列 ( k 1 , k 2 , … , k n ) (k_1,k_2,\dots,k_n) (k1,k2,,kn)相对于 ( 1 , 2 , … , n ) (1,2,\dots,n) (1,2,,n)的逆序数

注:

  • 逆序数即为逆序对的个数,可以用字典法观察得到
  • 该定义的原始想法是:行列式对应的矩阵可以由重排矩阵线性表出

1.3 行列式的基本性质:

  1. 上(下)三角行列式的值为对角线元素之积
  2. 某行(列)全为0,行列式值为0
  3. 某行(列)变为原来的常数c倍,行列式的值变为原来c倍
  4. 交换两行(列),行列式改变符号
  5. 存在两行(列)成比例,行列式值为0
  6. 某行(列)为两项之和,则行列式可拆分为两行列式之和
  7. 某行(列)乘以常数加到另一行(列),值不变
  8. 转置不改变行列式的值

给第六条举个例子吧:
∣ a 11 a 12 + c 21 b 21 b 22 + c 22 ∣ = ∣ a 11 a 12 b 21 b 22 ∣ + ∣ a 11 c 21 b 21 c 22 ∣ \begin{vmatrix} a_{11}&a_{12}+c_{21}\\ b_{21}&b_{22}+c_{22}\\ \end{vmatrix}= \begin{vmatrix} a_{11}&a_{12}\\ b_{21}&b_{22}\\ \end{vmatrix}+ \begin{vmatrix} a_{11}& c_{21}\\ b_{21}&c_{22}\\ \end{vmatrix} a11b21a12+c21b22+c22 = a11b21a12b22 + a11b21c21c22

1.4 行列式乘法定理:

设A,B都是n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B

引理:设n阶方阵A,n阶初等矩阵Q,则 ∣ Q A ∣ = ∣ Q ∣ ∣ A ∣ = ∣ A Q ∣ |QA|=|Q||A|=|AQ| QA=Q∣∣A=AQ

证明思路:

  • 若A非奇异:利用非异阵可表为初等阵之积
  • 若A奇异:利用A的相抵标准型

2. 行列式解线性方程组

2.1 Cramer法则

考虑如下的线性方程组AX=b,即
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 x 2 ⋮ x n ) = ( b 1 b 2 ⋮ b n ) \begin{pmatrix} a_{11}& a_{12}& \cdots &a_{1n}\\ a_{21}& a_{22}& \cdots &a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots&a_{nn}\\ \end{pmatrix} \begin{pmatrix} x_1\\x_2\\ \vdots \\x_n\\ \end{pmatrix}= \begin{pmatrix} b_1\\b_2\\ \vdots \\b_n\\ \end{pmatrix} a11a21an1a12a22an2a1na2nann x1x2xn = b1b2bn

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值