高等代数复习:行列式

本篇文章适合个人复习翻阅,不建议新手入门使用
参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著

1.行列式基本知识

1.1 归纳地定义行列式

二阶:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 21 a 12 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{vmatrix}=a_{11}a_{22}-a_{21}a_{12} a11a21a12a22 =a11a22a21a12

三阶:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 \begin{vmatrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{vmatrix}=a_{11}M_{11}-a_{21}M_{21}+a_{31}M_{31} a11a21a31a12a22a32a13a23a33 =a11M11a21M21+a31M31

n阶:
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 \begin{split} &\begin{vmatrix} a_{11}& a_{12}& \cdots &a_{1n}\\ a_{21}& a_{22}& \cdots &a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots&a_{nn}\\ \end{vmatrix}\\ &\quad\\ =a_{11}M_{11}&-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1} \end{split} =a11M11 a11a21an1a12a22an2a1na2nann a21M21++(1)n+1an1Mn1

其中M代表余子式,可以记 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (1)i+jMij A i j A_{ij} Aij,称作代数余子式

1.2 组合定义

行列式也可以一般地定义行列式,记 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n,则有
∣ A ∣ = ∑ ( k 1 , k 2 , … , k n ) ∈ S n ( − 1 ) N ( k 1 , k 2 , … , k n ) a k 1 1 a k 2 2 ⋯ a k n n |A|=\sum\limits_{(k_1,k_2,\dots,k_n)\in S_n}(-1)^{N(k_1,k_2,\dots,k_n)}a_{k_11}a_{k_22}\cdots a_{k_nn} A=(k1,k2,,kn)Sn(1)N(k1,k2,,kn)ak11ak22aknn
其中 N ( k 1 , k 2 , … , k n ) N(k_1,k_2,\dots,k_n) N(k1,k2,,kn)表示排列 ( k 1 , k 2 , … , k n ) (k_1,k_2,\dots,k_n) (k1,k2,,kn)相对于 ( 1 , 2 , … , n ) (1,2,\dots,n) (1,2,,n)的逆序数

注:

  • 逆序数即为逆序对的个数,可以用字典法观察得到
  • 该定义的原始想法是:行列式对应的矩阵可以由重排矩阵线性表出

1.3 行列式的基本性质:

  1. 上(下)三角行列式的值为对角线元素之积
  2. 某行(列)全为0,行列式值为0
  3. 某行(列)变为原来的常数c倍,行列式的值变为原来c倍
  4. 交换两行(列),行列式改变符号
  5. 存在两行(列)成比例,行列式值为0
  6. 某行(列)为两项之和,则行列式可拆分为两行列式之和
  7. 某行(列)乘以常数加到另一行(列),值不变
  8. 转置不改变行列式的值

给第六条举个例子吧:
∣ a 11 a 12 + c 21 b 21 b 22 + c 22 ∣ = ∣ a 11 a 12 b 21 b 22 ∣ + ∣ a 11 c 21 b 21 c 22 ∣ \begin{vmatrix} a_{11}&a_{12}+c_{21}\\ b_{21}&b_{22}+c_{22}\\ \end{vmatrix}= \begin{vmatrix} a_{11}&a_{12}\\ b_{21}&b_{22}\\ \end{vmatrix}+ \begin{vmatrix} a_{11}& c_{21}\\ b_{21}&c_{22}\\ \end{vmatrix} a11b21a12+c21b22+c22 = a11b21a12b22 + a11b21c21c22

1.4 行列式乘法定理:

设A,B都是n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B

引理:设n阶方阵A,n阶初等矩阵Q,则 ∣ Q A ∣ = ∣ Q ∣ ∣ A ∣ = ∣ A Q ∣ |QA|=|Q||A|=|AQ| QA=Q∣∣A=AQ

证明思路:

  • 若A非奇异:利用非异阵可表为初等阵之积
  • 若A奇异:利用A的相抵标准型

2. 行列式解线性方程组

2.1 Cramer法则

考虑如下的线性方程组AX=b,即
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 x 2 ⋮ x n ) = ( b 1 b 2 ⋮ b n ) \begin{pmatrix} a_{11}& a_{12}& \cdots &a_{1n}\\ a_{21}& a_{22}& \cdots &a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots&a_{nn}\\ \end{pmatrix} \begin{pmatrix} x_1\\x_2\\ \vdots \\x_n\\ \end{pmatrix}= \begin{pmatrix} b_1\\b_2\\ \vdots \\b_n\\ \end{pmatrix} a11a21an1a12a22an2a1na2nann x1x2xn = b1b2bn
记用b代替系数行列式 ∣ A ∣ |A| A的第j列得到的行列式为 ∣ A i ∣ |A_i| Ai,即
∣ A i ∣ = ∣ a 11 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 n a 21 ⋯ a 2 , i − 1 b 2 a 2 , i + 1 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ∣ |A_i|=\begin{vmatrix} a_{11}&\cdots&a_{1,i-1}&b_1& a_{1,i+1}& \cdots &a_{1n}\\ a_{21}&\cdots&a_{2,i-1}&b_2& a_{2,i+1}& \cdots &a_{2n}\\ \vdots&&\vdots&\vdots& \vdots&& \vdots\\ a_{n1}&\cdots&a_{n,i-1}&b_n& a_{n,i+1}& \cdots&a_{nn}\\ \end{vmatrix} Ai= a11a21an1a1,i1a2,i1an,i1b1b2bna1,i+1a2,i+1an,i+1a1na2nann
∣ A ∣ ≠ 0 |A|\neq 0 A=0,则方程组的解为 x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , … , x n = ∣ A n ∣ ∣ A ∣ x_1=\frac{|A_1|}{|A|},x_2=\frac{|A_2|}{|A|},\dots,x_n=\frac{|A_n|}{|A|} x1=AA1,x2=AA2,,xn=AAn

证明思路:

  • 先导出解的必要形式,再验证这个形式的确是解
  • 导出形式:将方程组代入 ∣ A i ∣ |A_i| Ai
  • 验证:代入解,将 ∣ A i ∣ |A_i| Ai按第i列展开

3. 行列式的展开

3.1 低阶展开

行列式展开的方式

  • 行列式可以按第一列展开:行列式的归纳定义
  • 行列式可以按任意一列展开:由基本性质4易证,只需将所要展开的列换为第一列
  • 行列式可以按第一行展开:
    ∣ A ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ = ∣ a 11 0 ⋯ 0 a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ⋯ + ∣ 0 0 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a 11 A 11 + ⋯ + a 1 n A 1 n \begin{split} |A|&= \begin{vmatrix} a_{11} & \cdots &a_{1n}\\ \vdots& &\vdots\\ a_{n1}&\cdots&a_{nn}\\ \end{vmatrix}\\ &= \begin{vmatrix} a_{11} &0& \cdots &0\\ a_{21}&a_{22}&\cdots &a_{2n}\\ \vdots&\vdots& &\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{vmatrix}+\cdots+ \begin{vmatrix} 0 &0& \cdots &a_{1n}\\ a_{21}&a_{22}&\cdots &a_{2n}\\ \vdots&\vdots& &\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn}\\ \end{vmatrix}\\ &=a_{11}A_{11}+\cdots+a_{1n}A_{1n} \end{split} A= a11an1a1nann = a11a21an10a22an20a2nann ++ 0a21an10a22an2a1na2nann =a11A11++a1nA1n
  • 行列式可以按任意一行,任意一列展开

3.2 高阶展开

3.2.1 补充定义

k < n , 1 ≤ i 1 < i 2 < ⋯ < i k ≤ n , 1 ≤ j 1 < j 2 < ⋯ < j k ≤ n k<n,1\leq i_1<i_2<\cdots<i_k\leq n,1\leq j_1<j_2<\cdots<j_k\leq n k<n,1i1<i2<<ikn,1j1<j2<<jkn

k阶子式:取行列式 ∣ A ∣ |A| A中的第 i 1 , i 2 , … , i k i_1,i_2,\dots ,i_k i1,i2,,ik行和第 j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,,jk列的交叉元素组成一个k阶行列式,称为k阶子式,记为 A ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) A\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix} A(i1j1i2j2ikjk)

余子式:去掉第 i 1 , i 2 , … , i k i_1,i_2,\dots ,i_k i1,i2,,ik行和第 j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,,jk列的所有元素,可以得到一个n-k阶行列式,称为上述k阶子式的余子式,记 M ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) M\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix} M(i1j1i2j2ikjk)
代数余子式
p = i 1 + i 2 + ⋯ + i k , q = j 1 + j 2 + ⋯ + j k p=i_1+i_2+\cdots+i_k,q=j_1+j_2+\cdots+j_k p=i1+i2++ik,q=j1+j2++jk

A ^ ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) = ( − 1 ) p + q M ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) \begin{split} &\hat{A}\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix}\\ &\quad\\ =(-&1)^{p+q}M \begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix}\\ \end{split} =(A^(i1j1i2j2ikjk)1)p+qM(i1j1i2j2ikjk)
称为k阶子式的代数余子式

3.2.2 Laplace定理

设n阶行列式 ∣ A ∣ |A| A,在 ∣ A ∣ |A| A中任取k行(列), ∣ A ∣ |A| A可展为含于这k行(列)的全部k阶子式与它们对应的代数余子式的乘积之和,

即若取定k行: 1 ≤ i 1 < i 2 < ⋯ < i k ≤ n 1\leq i_1<i_2<\cdots<i_k\leq n 1i1<i2<<ikn
∣ A ∣ = ∑ 1 ≤ j 1 < j 2 < ⋯ < j k ≤ n A ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) A ^ ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) |A|=\sum\limits_{1\leq j_1<j_2<\cdots<j_k\leq n}A\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix} \hat{A}\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix} A=1j1<j2<<jknA(i1j1i2j2ikjk)A^(i1j1i2j2ikjk)
若取定k列: 1 ≤ j 1 < j 2 < ⋯ < j k ≤ n 1\leq j_1<j_2<\cdots<j_k\leq n 1j1<j2<<jkn
∣ A ∣ = ∑ 1 ≤ i 1 < i 2 < ⋯ < i k ≤ n A ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) A ^ ( i 1 i 2 ⋯ i k j 1 j 2 ⋯ j k ) |A|=\sum\limits_{1\leq i_1<i_2<\cdots<i_k\leq n}A\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix} \hat{A}\begin{pmatrix} i_1&i_2&\cdots &i_k\\ j_1&j_2&\cdots &j_k\\ \end{pmatrix} A=1i1<i2<<iknA(i1j1i2j2ikjk)A^(i1j1i2j2ikjk)

证明思路

  1. 按照行列式的组合定义,行列式共有 n ! n! n!
    考虑Laplace定理的展开式,选定k行后,子式的选择有 C n k C_n^k Cnk种,每个子式展开有 k ! k! k!项,其相应的代数余子式展开有 ( n − k ) ! (n-k)! (nk)!项,总共为
    C n k ⋅ k ! ⋅ ( n − k ) ! = n ! C_n^k\cdot k!\cdot (n-k)!=n! Cnkk!(nk)!=n!
  2. 所以证明思路应该是:证明每个k阶子式与其代数余子式之积中的每一项都互异且都属于 ∣ A ∣ |A| A的展开式,则证明了Laplace定理
  3. 证明以上条目2中的“属于”,证明技巧即先特殊后一般
    特殊:取 i 1 = 1 , i 2 = 2 , … , i k = k j 1 = 1 , j 2 = 2 , … , j k = k i_1=1,i_2=2,\dots,i_k=k\\ j_1=1,j_2=2,\dots,j_k=k i1=1,i2=2,,ik=kj1=1,j2=2,,jk=k A ( 1 2 ⋯ k 1 2 ⋯ k ) A ^ ( 1 2 ⋯ k 1 2 ⋯ k ) A\begin{pmatrix} 1&2&\cdots &k\\ 1&2&\cdots &k\\ \end{pmatrix} \hat{A}\begin{pmatrix} 1&2&\cdots &k\\ 1&2&\cdots &k\\ \end{pmatrix} A(1122kk)A^(1122kk)
    中的任一项具有以下形式
    ( − 1 ) σ a j 1 1 a j 2 2 ⋯ a j k k a j k + 1 , k + 1 ⋯ a j n n (-1)^{\sigma}a_{j_11}a_{j_22}\cdots a_{j_kk}a_{j_{k+1},k+1}\cdots a_{j_nn} (1)σaj11aj22ajkkajk+1,k+1ajnn
    其中
    σ = N ( j 1 , j 2 , … , j k ) + N ( j k + 1 , j k + 2 , … , j n ) \sigma = N( j_1,j_2,\dots,j_k)+N(j_{k+1},j_{k+2},\dots,j_n) σ=N(j1,j2,,jk)+N(jk+1,jk+2,,jn)
    由逆序数的定义易知
    N ( j 1 , j 2 , … , j n ) = N ( j 1 , j 2 , … , j k ) + N ( j k + 1 , j k + 2 , … , j n ) \begin{split} &N(j_1,j_2,\dots,j_n)\\ =&N( j_1,j_2,\dots,j_k)+N(j_{k+1},j_{k+2},\dots,j_n) \end{split} =N(j1,j2,,jn)N(j1,j2,,jk)+N(jk+1,jk+2,,jn)
    即得结论
    一般情形即把相应行(列)依次换到前k行(列)

3.2.3 行列式的降阶公式:

由Laplace定理可得到如下的重要推论:

将一个矩阵分块,左上角和右下角均划分为方阵,记为m阶方阵A,n阶方阵D

  1. ∣ A O C D ∣ = ∣ A ∣ ⋅ ∣ D ∣ \begin{vmatrix} A& O\\ C& D\\ \end{vmatrix} =|A|\cdot |D| ACOD =AD
  2. 若A为可逆阵,则
    ∣ A B C D ∣ = ∣ A ∣ ∣ D − C A − 1 B ∣ \begin{vmatrix} A & B\\ C & D\\ \end{vmatrix}=|A||D-CA^{-1}B| ACBD =A∣∣DCA1B
  3. 若D为可逆阵,则
    ∣ A B C D ∣ = ∣ D ∣ ∣ A − B D − 1 C ∣ \begin{vmatrix} A & B\\ C & D\\ \end{vmatrix}=|D||A-BD^{-1}C| ACBD =D∣∣ABD1C

证明过程:将分块阵化为对角阵的形式即可
∣ A B C D ∣ = ∣ A B O D − C A − 1 B ∣ = ∣ A ∣ ∣ D − C A − 1 B ∣ \begin{vmatrix} A & B\\ C & D\\ \end{vmatrix}= \begin{vmatrix} A & B\\ O & D-CA^{-1}B\\ \end{vmatrix}=|A||D-CA^{-1}B| ACBD = AOBDCA1B =A∣∣DCA1B推论1:设 n n n 阶矩阵A,B,有 ∣ A B B A ∣ = ∣ A + B ∣ ∣ A − B ∣ \begin{vmatrix} A&B\\ B&A\\ \end{vmatrix} =|A+B||A-B| ABBA =A+B∣∣AB推论2:设 n n n 阶复矩阵A,B,有 ∣ A − B B A ∣ = ∣ A + i B ∣ ∣ A − i B ∣ \begin{vmatrix} A&-B\\ B&A\\ \end{vmatrix} =|A+iB||A-iB| ABBA =A+iB∣∣AiB推论3:设 n n n 阶矩阵A,B,且 A B = B A AB=BA AB=BA,有 ∣ A − B B A ∣ = A 2 + B 2 \begin{vmatrix} A&-B\\ B&A\\ \end{vmatrix}=A^2+B^2 ABBA =A2+B2

4. Cauchy-Binet公式

4.1 Cauchy-Binet公式

m × n m\times n m×n阶矩阵A, n × m n\times m n×m阶矩阵B

m > n m>n m>n,则有 ∣ A B ∣ = 0 |AB|=0 AB=0

m ≤ n m\leq n mn,则有
∣ A B ∣ = ∑ 1 ≤ j 1 < ⋯ j m ≤ n A ( 1 2 ⋯ m j 1 j 2 ⋯ m ) B ( j 1 j 2 ⋯ m 1 2 ⋯ m ) |AB|=\sum\limits_{1\leq j_1<\cdots j_m\leq n} A\begin{pmatrix} 1&2&\cdots&m\\ j_1&j_2&\cdots&m\\ \end{pmatrix} B\begin{pmatrix} j_1&j_2&\cdots&m\\ 1&2&\cdots&m\\ \end{pmatrix} AB=1j1<jmnA(1j12j2mm)B(j11j22mm)

证明思路:令 C = ( A O − I n B ) , M = ( O A B − I n B ) C=\begin{pmatrix} A& O\\ -I_n& B\\ \end{pmatrix}, M=\begin{pmatrix} O& AB\\ -I_n & B\\ \end{pmatrix} C=(AInOB),M=(OInABB)

(1) ∣ M ∣ = ∣ C ∣ |M|=|C| M=C

(2)由Laplace定理,以前m行展开,得 ∣ M ∣ = ( − 1 ) n ( m + 1 ) ∣ A B ∣ |M|=(-1)^{n(m+1)}|AB| M=(1)n(m+1)AB

(3)由Laplace定理,以前m行展开,

若m>n,则 ∣ C ∣ = 0 |C|=0 C=0

m ≤ n m\leq n mn,则
∣ C ∣ = ∑ 1 ≤ j 1 < ⋯ < j m ≤ n A ( 1 2 ⋯ m j 1 j 2 ⋯ j m ) C ^ ( 1 2 ⋯ m j 1 j 2 ⋯ j m ) |C|=\sum\limits_{1\leq j_1<\cdots<j_m\leq n} A\begin{pmatrix} 1&2&\cdots &m\\ j_1&j_2&\cdots&j_m\\ \end{pmatrix} \hat{C}\begin{pmatrix} 1&2&\cdots &m\\ j_1&j_2&\cdots&j_m\\ \end{pmatrix} C=1j1<<jmnA(1j12j2mjm)C^(1j12j2mjm)

1 , 2 , … , n 1,2,\dots,n 1,2,,n去掉 j 1 , … , j m j_1,\dots,j_m j1,,jm后剩余的排列为 i 1 , … , i n − m i_1,\dots,i_{n-m} i1,,inm
C ^ ( 1 2 ⋯ m j 1 j 2 ⋯ j m ) = ( − 1 ) m ( m + 1 ) 2 + ( j 1 + ⋯ + j m ) ∣ − e i 1 , − e i 2 , ⋯   , − e i n − m , B ∣ \hat{C}\begin{pmatrix} 1&2&\cdots &m\\ j_1&j_2&\cdots&j_m\\ \end{pmatrix}=(-1)^{\frac{m(m+1)}{2}+(j_1+\cdots+j_m)}|-e_{i_1},-e_{i_2},\cdots,-e_{i_{n-m}},B| C^(1j12j2mjm)=(1)2m(m+1)+(j1++jm)ei1,ei2,,einm,B
∣ − e i 1 , ⋯   , − e i n − m , B ∣ = ( − 1 ) ( n − m ) + ( i 1 + ⋯ + i n − m ) + ( 1 + n − m ) ( n − m ) 2 B ( j 1 j 2 ⋯ j m 1 2 ⋯ m ) |-e_{i_1},\cdots,-e_{i_{n-m}},B|=(-1)^{(n-m)+(i_1+\cdots+i_{n-m})+\frac{(1+n-m)(n-m)}{2}} B\begin{pmatrix} j_1&j_2&\cdots&j_m\\ 1&2&\cdots &m\\ \end{pmatrix} ei1,,einm,B=(1)(nm)+(i1++inm)+2(1+nm)(nm)B(j11j22jmm)

结合 ( j 1 + ⋯ + j m ) + ( i 1 + ⋯ + i n − m ) = 1 + 2 + ⋯ + n (j_1+\cdots+j_m)+(i_1+\cdots+i_{n-m})=1+2+\cdots+n (j1++jm)+(i1++inm)=1+2++n可以得到
∣ C ∣ = ( − 1 ) n ( m + 1 ) ∑ 1 ≤ j 1 < ⋯ < j m ≤ n A ( 1 2 ⋯ m j 1 j 2 ⋯ j m ) ⋅ B ( j 1 j 2 ⋯ j m 1 2 ⋯ m ) |C|=(-1)^{n(m+1)}\sum\limits_{1\leq j_1<\cdots<j_m\leq n} A\begin{pmatrix} 1&2&\cdots &m\\ j_1&j_2&\cdots&j_m\\ \end{pmatrix}\cdot B\begin{pmatrix} j_1&j_2&\cdots&j_m\\ 1&2&\cdots &m\\ \end{pmatrix} C=(1)n(m+1)1j1<<jmnA(1j12j2mjm)B(j11j22jmm)

4.2 几个推论

推论1:

m × n m\times n m×n阶矩阵A, n × m n\times m n×m阶矩阵B, r ≤ m r\leq m rm
r > n r>n r>n,则AB的任意r阶子式必为0
r ≤ n r\leq n rn,则
A B ( i 1 i 2 ⋯ i r j 1 j 2 ⋯ j r ) = ∑ 1 ≤ k 1 < k 2 < ⋯ < k r ≤ n A ( i 1 i 2 ⋯ i r k 1 k 2 ⋯ k r ) B ( k 1 k 2 ⋯ k r j 1 j 2 ⋯ j r ) AB\begin{pmatrix} i_1&i_2&\cdots&i_r\\ j_1&j_2&\cdots&j_r\\ \end{pmatrix}= \sum\limits_{1\leq k_1<k_2<\cdots<k_r\leq n} A\begin{pmatrix} i_1&i_2&\cdots&i_r\\ k_1&k_2&\cdots&k_r\\ \end{pmatrix} B\begin{pmatrix} k_1&k_2&\cdots&k_r\\ j_1&j_2&\cdots&j_r\\ \end{pmatrix} AB(i1j1i2j2irjr)=1k1<k2<<krnA(i1k1i2k2irkr)B(k1j1k2j2krjr)

推论2:
设A是 m × n m\times n m×n阶的实矩阵,则 A A ′ AA' AA的任意主子式均非负

Cauchy-Binet公式可以用来证明如下的lagrange恒等式,并且十分简洁

推论3:
Lagrange恒等式
( ∑ i = 1 n a i 2 ) ⋅ ( ∑ i = 1 n b i 2 ) − ( ∑ i = 1 n a i b i ) 2 = ∑ 1 ≤ i < j ≤ n ( a i b j − a j b i ) 2 (\sum\limits_{i=1}^na_i^2)\cdot(\sum\limits_{i=1}^nb_i^2)-(\sum\limits_{i=1}^na_ib_i)^2= \sum\limits_{1\leq i<j\leq n}(a_ib_j-a_jb_i)^2 (i=1nai2)(i=1nbi2)(i=1naibi)2=1i<jn(aibjajbi)2

证明:
只需注意到以下事实
( ∑ i = 1 n a i 2 ) ⋅ ( ∑ i = 1 n b i 2 ) − ( ∑ i = 1 n a i b i ) 2 = ∣ ∑ i = 1 n a i 2 ∑ i = 1 n a i b i ∑ i = 1 n a i b i ∑ i = 1 n b i 2 ∣ = ∣ a 1 a 2 ⋯ a n b 1 b 2 ⋯ b n ∣ ∣ a 1 b 1 a 2 b 2 ⋮ ⋮ a n b n ∣ = ∑ 1 ≤ i < j ≤ n ( a i b j − a j b i ) 2 \begin{split} &(\sum\limits_{i=1}^na_i^2)\cdot(\sum\limits_{i=1}^nb_i^2)-(\sum\limits_{i=1}^na_ib_i)^2\\ =&\begin{vmatrix} \sum\limits_{i=1}^na_i^2&\sum\limits_{i=1}^na_ib_i\\ \sum\limits_{i=1}^na_ib_i&\sum\limits_{i=1}^nb_i^2\\ \end{vmatrix}\\ =&\begin{vmatrix} a_1&a_2&\cdots&a_n\\ b_1&b_2&\cdots&b_n\\ \end{vmatrix} \begin{vmatrix} a_1&b_1\\ a_2&b_2\\ \vdots&\vdots\\ a_n&b_n\\ \end{vmatrix}\\ =&\sum\limits_{1\leq i<j\leq n}(a_ib_j-a_jb_i)^2\\ \end{split} ===(i=1nai2)(i=1nbi2)(i=1naibi)2 i=1nai2i=1naibii=1naibii=1nbi2 a1b1a2b2anbn a1a2anb1b2bn 1i<jn(aibjajbi)2

注意到上述等式右端大于等于0,故得Cauchy-schwarz不等式
( ∑ i = 1 n a i 2 ) ⋅ ( ∑ i = 1 n b i 2 ) ≥ ( ∑ i = 1 n a i b i ) 2 (\sum\limits_{i=1}^na_i^2)\cdot(\sum\limits_{i=1}^nb_i^2)\geq (\sum\limits_{i=1}^na_ib_i)^2 (i=1nai2)(i=1nbi2)(i=1naibi)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值