文章目录
本篇文章适合个人复习翻阅,不建议新手入门使用
参考书:《高等代数学》谢启鸿 姚慕生 吴泉水 编著
1.行列式基本知识
1.1 归纳地定义行列式
二阶:
∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 21 a 12 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{vmatrix}=a_{11}a_{22}-a_{21}a_{12}
a11a21a12a22
=a11a22−a21a12
三阶:
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 M 11 − a 21 M 21 + a 31 M 31 \begin{vmatrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{vmatrix}=a_{11}M_{11}-a_{21}M_{21}+a_{31}M_{31}
a11a21a31a12a22a32a13a23a33
=a11M11−a21M21+a31M31
n阶:
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = a 11 M 11 − a 21 M 21 + ⋯ + ( − 1 ) n + 1 a n 1 M n 1 \begin{split} &\begin{vmatrix} a_{11}& a_{12}& \cdots &a_{1n}\\ a_{21}& a_{22}& \cdots &a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots&a_{nn}\\ \end{vmatrix}\\ &\quad\\ =a_{11}M_{11}&-a_{21}M_{21}+\cdots +(-1)^{n+1}a_{n1}M_{n1} \end{split} =a11M11
a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann
−a21M21+⋯+(−1)n+1an1Mn1
其中M代表余子式,可以记 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (−1)i+jMij为 A i j A_{ij} Aij,称作代数余子式
1.2 组合定义
行列式也可以一般地定义行列式,记 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n,则有
∣ A ∣ = ∑ ( k 1 , k 2 , … , k n ) ∈ S n ( − 1 ) N ( k 1 , k 2 , … , k n ) a k 1 1 a k 2 2 ⋯ a k n n |A|=\sum\limits_{(k_1,k_2,\dots,k_n)\in S_n}(-1)^{N(k_1,k_2,\dots,k_n)}a_{k_11}a_{k_22}\cdots a_{k_nn} ∣A∣=(k1,k2,…,kn)∈Sn∑(−1)N(k1,k2,…,kn)ak11ak22⋯aknn
其中 N ( k 1 , k 2 , … , k n ) N(k_1,k_2,\dots,k_n) N(k1,k2,…,kn)表示排列 ( k 1 , k 2 , … , k n ) (k_1,k_2,\dots,k_n) (k1,k2,…,kn)相对于 ( 1 , 2 , … , n ) (1,2,\dots,n) (1,2,…,n)的逆序数
注:
- 逆序数即为逆序对的个数,可以用字典法观察得到
- 该定义的原始想法是:行列式对应的矩阵可以由重排矩阵线性表出
1.3 行列式的基本性质:
- 上(下)三角行列式的值为对角线元素之积
- 某行(列)全为0,行列式值为0
- 某行(列)变为原来的常数c倍,行列式的值变为原来c倍
- 交换两行(列),行列式改变符号
- 存在两行(列)成比例,行列式值为0
- 某行(列)为两项之和,则行列式可拆分为两行列式之和
- 某行(列)乘以常数加到另一行(列),值不变
- 转置不改变行列式的值
给第六条举个例子吧:
∣ a 11 a 12 + c 21 b 21 b 22 + c 22 ∣ = ∣ a 11 a 12 b 21 b 22 ∣ + ∣ a 11 c 21 b 21 c 22 ∣ \begin{vmatrix} a_{11}&a_{12}+c_{21}\\ b_{21}&b_{22}+c_{22}\\ \end{vmatrix}= \begin{vmatrix} a_{11}&a_{12}\\ b_{21}&b_{22}\\ \end{vmatrix}+ \begin{vmatrix} a_{11}& c_{21}\\ b_{21}&c_{22}\\ \end{vmatrix}
a11b21a12+c21b22+c22
=
a11b21a12b22
+
a11b21c21c22
1.4 行列式乘法定理:
设A,B都是n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| ∣AB∣=∣A∣∣B∣
引理:设n阶方阵A,n阶初等矩阵Q,则 ∣ Q A ∣ = ∣ Q ∣ ∣ A ∣ = ∣ A Q ∣ |QA|=|Q||A|=|AQ| ∣QA∣=∣Q∣∣A∣=∣AQ∣
证明思路:
- 若A非奇异:利用非异阵可表为初等阵之积
- 若A奇异:利用A的相抵标准型
2. 行列式解线性方程组
2.1 Cramer法则
考虑如下的线性方程组AX=b,即
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ) ( x 1 x 2 ⋮ x n ) = ( b 1 b 2 ⋮ b n ) \begin{pmatrix} a_{11}& a_{12}& \cdots &a_{1n}\\ a_{21}& a_{22}& \cdots &a_{2n}\\ \vdots& \vdots& & \vdots\\ a_{n1}& a_{n2}& \cdots&a_{nn}\\ \end{pmatrix} \begin{pmatrix} x_1\\x_2\\ \vdots \\x_n\\ \end{pmatrix}= \begin{pmatrix} b_1\\b_2\\ \vdots \\b_n\\ \end{pmatrix}
a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann
x1x2⋮xn
=
b1b2⋮bn