问题描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎 么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一 个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N元)的前提 下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为 j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为 j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请 你帮助金明设计一个满足要求的购物单。
解题思路:
0-1背包问题。
状态转移方程dp[j]=max(dp[j],dp[j-w[i]]+w[i]*val[i]);
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define fr(a,b,c) for(int a=b;a<c;a++)
#define max(a,b) ((a)>(b)?(a):(b))
#define read(a) cin>>a
#define set(a,b) memset(a,b,sizeof(a))
int main()
{
int v,n;
read(v);
read(n);
int w[110],val[110];
int dp[30100];
set(w,0);
set(val,0);
set(dp,0);
fr(i,0,n)
{
read(w[i]);
read(val[i]);
}
for(int i=0;i<n;i++)
for(int j=v;j>=w[i];j--)
{
dp[j]=max(dp[j],dp[j-w[i]]+val[i]*w[i]);
}
cout<<dp[v]<<endl;
}