开心的金明

问题描述
  金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎 么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一 个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N元)的前提 下,使每件物品的价格与重要度的乘积的总和最大。
  设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为 j1,j2,……,jk,则所求的总和为:
  v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)

  请 你帮助金明设计一个满足要求的购物单。

解题思路:

0-1背包问题。

状态转移方程dp[j]=max(dp[j],dp[j-w[i]]+w[i]*val[i]);

#include<cstdio>
#include<cstring> 
#include<iostream>
#include<algorithm>
using namespace std;
#define fr(a,b,c) for(int a=b;a<c;a++)
#define max(a,b) ((a)>(b)?(a):(b))
#define read(a) cin>>a
#define set(a,b) memset(a,b,sizeof(a))
int main()
{
	int v,n;
	read(v);
	read(n);
	int w[110],val[110];
	int dp[30100];
	set(w,0);
	set(val,0);
	set(dp,0);
	fr(i,0,n)
	{
		read(w[i]);
		read(val[i]);
	}
	for(int i=0;i<n;i++)
	for(int j=v;j>=w[i];j--)
	{
		dp[j]=max(dp[j],dp[j-w[i]]+val[i]*w[i]);
	}
	cout<<dp[v]<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值