线性代数笔记 一

--本文章为笔者学习记录使用,若有兴趣可以一起看看

1.向量:

在线代里我们关注的是它的几何意义,向量一般用这样的形式表示,也可以用(a,b)的形式。这是一个在二维空间的向量,它的涵义是一条从原点指向点(a,b)的线段,方向为从原点指向,大小为原点到这个点的距离。向量可以加减,比如就可以理解为+=,可以理解为从原点出发沿着x轴走a,在沿着y轴走b,从原点到这个新的位置就是向量和向量相加后的新向量。三位向量会多一条由z轴提供的分量,c表示三维向量在三维空间中z方向的大小。

2.线性组合:

两个数乘以向量的合被称为这两个向量的线性组合,例如。这里引入基向量的概念,基向量是两条线性无关的单位向量,例如我们在二维空间中有基,那么我们可以通过的方式得到这个二维平面内所有的向量。同时这也就意味着我们在描述向量是都依赖着这个向量所使用的基向量,上述中两条就是这个二维空间坐标系的基向量。上述的的概括并不严谨,因为构成向量空间的一组基需要时一个线性无关的向量集,及这两个向量需要不在同一方向上,也不能是原点。

有了基向量的概念后我们就知道空间中的任何一条向量都可以通过它们的线性组合来得到。在二维空间中(参照笛卡尔坐标系),我们有基向量,表示为

我们有一条向量,由上可以知道它可以用基向量表示,为

这样就是:

==

3.矩阵与线性变化:

对于线性变化,一个变化可以看作一种函数,输入所需要改变的向量在输出结果,只不过这个函数的最高次是1。矩阵是线性变换的一种表现方式,我们用一个列矩阵来表示上面的基向量,这个矩阵的每一列就是一条基向量。由基向量的性质可知,对基向量进行线性变换,再用变换后的基向量去表示原本需要变换的向量,就可以得到被变换后得

假如我们对基向量都扩大两倍,那么这个线性变换可以表示为M(s)=。之前说矩阵得乘法可以理解为函数,例如,其中x就是向量。用矩阵表示就是=。这里可以理解为

向量在每个方向上新进行对新的基向量进行数乘,即x*+y*=

矩阵乘法的目的是对坐标的改变。假如要对一个向量进行旋转,二维空间下的旋转矩阵可以表示为:

=(矩阵推导过程暂时省略)。如果需要对一个向量进行缩放旋转的复合变换,

那么可以表示为,这里是表示对矩阵先进行缩放然后再进行旋转。如果两个变换矩阵交换一

下位置,那么这里就会变成先旋转再缩放的。矩阵变换的顺序不能变,由上可知矩阵的意义可以理解为函

数,那么复合矩阵可以理解复合函数,例如,所以矩阵的乘法需要从右向左读即函数的从里向外

读。交换顺序一般回造成不同的结果。不过变换矩阵可以先进行计算,变成一个结合的矩阵

=,两个线性变化先变成一个符合矩阵可以理解为,对于

M(s)的两条基向量,方便进行的操作,急

=2a*+2c =

=2b*+2d=

那么==

线性变换:在代数里直线对应一次代数方程,也就是变量的次数只有1,所以向量的加减是线性的,乘除不是.

从几何角度看线性变换就是对这条向量进行变换后直线依然是直线,并且原点依然是原点

线性相关:在一组向量基中,其中的某一个变量可以在线性变化下的到其他的所有变量,那么这组向量基就是线性相关的,反之则线性无关。

平移不是线性变换,因为向量具有平移不变性,变换后的向量还是它本身。且平移后原点变了。

关于线性变换的理解,有兴趣可以查看相关链接。

三维空间中以上概念也一样适用

4.行列式:

行列式算是矩阵的一个特征属性,类似于向量与向量的模。从代数上看,行列式的意义是一种大小的映射,在一维时它是向量的长度,在二维是两条向量映射的面积,在三维是三条向量组成立方体的体积。

从几何上看,它是一个比例的数值,就如上面的线性变换所说,每一个变换矩阵都可以通过理解对基向量的拉伸缩放来作用于目标向量,也就是线性变换可以看作是对整个空间的变换。我们通过行列式的值可以空间比起原本的大小进行多少的缩放。

行列式的值有正有负,对应空间有正反面的设定。同时,如果一个行列式的值为0,那么表示这个空间被压缩到降维了。

5.线性方程组,秩,逆矩阵,列空间,零空间

如上=,假设===

==,通过向量的数乘与向量的加减可知:,

这个方程组就是这次线性变换矩阵的方程组,每一个变量都是一次幂。

通过解这个线性方程组,我们就可以得到。当然这是在有解的情况下才有的结论。对于一个线性方程组有没有解,我们可以通过线性变换矩阵的行列式去判断,当一个行列式的值为0,就说明这个行列式将空间进行了降维(这样说并不准确,实际上维度并没改变,改变的是基向量本身张成的空间)。

一个变换矩阵在进行线性变换后,将空间进行了降维,例如原本的是三维空间经过线性变换后变成了基向量的张成空间变成了二维。那么基向量的组成的矩阵的秩就变成了2,如果压缩到了一维那么秩就是1,如果还是3,那么就是满秩。也就是不是满秩的情况,变换矩阵的行列式的值是0。

上面的规则主要还是为了求解,这里我们有逆矩阵的概念。一条向量在经过线性变化A的作用后,再将得到的新向量用完全相反的线性变化后就能得到原本得向量。将一个向量变换后再用逆矩阵变换回去的操作叫做恒等变换,即在二维空间中有=。在不是满秩的情况下,说明有一条基向量压缩到了零点,那么它便失去了线性变换的意思,一个点通过函数只能得到另一个点,无法还原成一个面。此时求得的解就是唯一解。

在列矩阵中每一列都是一条向量,所以这些向量张成的空间就是列空间。当行列式时得值不为0时且不为满秩,求得的值几乎是唯一解,有可能有其解

零空间就是所有向量都变换到零点,零空间就是线性方程组的所有解。

非方阵:简单来说就是有一个维度的基向量在零点,但是他是满秩的

6.点积:

点积在概念上一般被定义为一条向量在另一条向量上的投影与另一条向量的数量积。

假设向量, 向量的投影长度与|n|相乘。通过三角函数可以表示为 = 。从线性变换的角度来看则是将降维到上去再与|n|数乘,即==ab+dc。

对偶性:对于一条向量有一个线性变化与它对应,形式上是它的倒放(?)

对于这一段线性变化:,是先将表示线性变换的向量放倒,它表示将向量由它所在的数轴来表示,在这条数轴上,组成的基向量分别从原点指向a,c两点,当被变换到这调数轴上时则有=,即这个值。

线性变化与投影的关系:拆解向量。

对于向量来说,点积的结果体现了两条向量的在统一维度里的相似度,值为正则同向,为负则相反,值越大象性越高。为0则垂直。

7.叉积

叉积与点积可以理解为,点积是在同一纬度上的相似度,叉积是在不同维度上的相似度,即内积和外积。叉积的定义是过两条向量交点,并垂直于两条向量所在平面空间的一条向量,它的值是这两条向量映射平行四边形的面积。

假设有向量,则有 = 。这是叉积的传统定义,最终展开为

推导:假设空间中有任意向量,对组成的空间体积则有,需要求叉积的两条向量组成映射的面积是固定的,所以对于组成的空间体积来说,这个体积的大小是随着向量线性变换的,即,由点积与对偶性可以知道对于向量求一个数乘结果的线性变化可以用点积来描述,设该线性变化为,

=

即向量·=

在空间中,是由det()的值(两条向量映射出的面积)乘以向量在这垂直于条平面上的向量上的投影,由·=可知向量就是这条垂直的向量,大小为det()。

所以向量就是要求的叉积向量,在次描述中可知,向量=可以是任意向量。所以一般用代替,表示所求目标是一条向量。

对于向量·,则有

=

资料:【熟肉】线性代数的本质 - 01 - 向量究竟是什么?_哔哩哔哩_bilibili

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值